Convergence of fully discrete schemes for diffusive dispersive conservation laws with discontinuous coefficient
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 5, pp. 1289-1331.

We are concerned with fully-discrete schemes for the numerical approximation of diffusive-dispersive hyperbolic conservation laws with a discontinuous flux function in one-space dimension. More precisely, we show the convergence of approximate solutions, generated by the scheme corresponding to vanishing diffusive-dispersive scalar conservation laws with a discontinuous coefficient, to the corresponding scalar conservation law with discontinuous coefficient. Finally, the convergence is illustrated by several examples. In particular, it is delineated that the limiting solutions generated by the scheme need not coincide, depending on the relation between diffusion and the dispersion coefficients, with the classical Kružkov−Oleĭnik entropy solutions, but contain nonclassical undercompressive shock waves.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2015083
Classification : 35L65, 35L67, 35L25, 65M12, 65M06, 65M08
Mots-clés : Conservation laws, discontinuous flux, diffusive-dispersive approximation, finite difference scheme, convergence, entropy condition, nonclassical shock
Dutta, Rajib 1 ; Koley, Ujjwal 2 ; Ray, Deep 2

1 Institut für Mathematik, Julius-Maximilians-Universität Würzburg, Campus Hubland Nord, Emil-Fischer-Strasse 30, 97074, Würzburg, Germany.
2 Centre For Applicable Mathematics (CAM), Tata Institute of Fundamental Research, P.O. Box 6503, GKVK post office, 560065 Bangalore, India.
@article{M2AN_2016__50_5_1289_0,
     author = {Dutta, Rajib and Koley, Ujjwal and Ray, Deep},
     title = {Convergence of fully discrete schemes for diffusive dispersive conservation laws with discontinuous coefficient},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1289--1331},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {5},
     year = {2016},
     doi = {10.1051/m2an/2015083},
     zbl = {1373.65054},
     mrnumber = {3554544},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2015083/}
}
TY  - JOUR
AU  - Dutta, Rajib
AU  - Koley, Ujjwal
AU  - Ray, Deep
TI  - Convergence of fully discrete schemes for diffusive dispersive conservation laws with discontinuous coefficient
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 1289
EP  - 1331
VL  - 50
IS  - 5
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2015083/
DO  - 10.1051/m2an/2015083
LA  - en
ID  - M2AN_2016__50_5_1289_0
ER  - 
%0 Journal Article
%A Dutta, Rajib
%A Koley, Ujjwal
%A Ray, Deep
%T Convergence of fully discrete schemes for diffusive dispersive conservation laws with discontinuous coefficient
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 1289-1331
%V 50
%N 5
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2015083/
%R 10.1051/m2an/2015083
%G en
%F M2AN_2016__50_5_1289_0
Dutta, Rajib; Koley, Ujjwal; Ray, Deep. Convergence of fully discrete schemes for diffusive dispersive conservation laws with discontinuous coefficient. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 5, pp. 1289-1331. doi : 10.1051/m2an/2015083. http://archive.numdam.org/articles/10.1051/m2an/2015083/

K. Aziz and A. Settari, Fundamentals of petroleum reservoir simulation. Applied Science Publishers, London (1979).

C. Chalons and P.G. Lefloch, A fully-discrete scheme for diffusive-dispersive conservation laws. Numer. Math. 89 (2001) 493–509. | DOI | MR | Zbl

G.-Q. Chen, Compactness methods and nonlinear hyperbolic conservation laws. In some current topics on nonlinear conservation laws. AMS, Providence, RI (2000) 33–75. | MR | Zbl

G.M. Coclite, L. Di Ruvo, J. Ernest and S. Mishra, Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes. Netw. Heterog. Media. 8 (2013) 969–984. | DOI | MR | Zbl

R.J. Diperna, Convergence of approximate solutions to conservation laws. Arch. Ration. Mech. Anal. 82 (1983) 27–70. | DOI | MR | Zbl

J. Ernest, P.G. Lefloch and S. Mishra, Schemes with Well-Controlled dissipation. I: Non-classical shock waves, SIAM J. Numer. Math. 53 (2015) 674–699. | DOI | MR | Zbl

S.M. Hassanizadeh and W.G. Gray, Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv. Water Resour. 13 (1990) 169–186. | DOI

B.T. Hayes and P.G. Lefloch, Nonclassical shock waves and kinetic relations. Strictly hyperbolic systems, Preprint no. 357. CMAP, Ecole Polytechnique, Palaiseau, France (1996).

B.T. Hayes and P.G. Lefloch, Nonclassical shocks and kinetic relations: strictly hyperbolic systems. SIAM. J. Math. Anal. 31 (2000) 941–991. | DOI | MR | Zbl

T.Y. Hou and P.G. Lefloch, Why nonconservative schemes converge to wrong solutions. Error analysis. Math. Comput. 62 (1994) 497–530. | DOI | MR | Zbl

S. Hwang and A.E. Tzavaras, Kinetic decomposition of approximate solutions to conservations laws: Application to relaxation and diffusion-dispersion approximations. Commun. Partial Differ. Equ. 27 (2002) 1229–1254. | DOI | MR | Zbl

D. Jacobs, W.R. Mckinney and M. Shearer, Traveling wave solutions of the modified Korteweg-deVries Burgers equation. J. Differ. Equ. 116 (1995) 448–467. | DOI | MR | Zbl

K.H. Karlsen and J.D. Towers, Convergence of the Lax-Friedrichs scheme and stability for conservation laws with a discontinous space-time dependent flux, Chinese Ann. Math. Ser. B. 25 (2004) 287–318. | DOI | MR | Zbl

K.H. Karlsen, N.H. Risebro and J.D. Towers, L 1 stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients. Skr. K. Nor. Vidensk. Selsk. 3 (2003) 1–49. | MR | Zbl

K.H. Karlsen, S. Mishra and N.H. Risebro, Convergence of finite volume schemes for triangular systems of conservation laws. Numer. Math. 111 (2008) 559–589. | DOI | MR | Zbl

F. Kissling and C. Rohde, The computation of nonclassical shock waves with a heterogeneous multi-scale method. Netw. Heterog. Media. 5 (2010) 661–674. | DOI | MR | Zbl

F. Kissling and K.H. Karlsen, On the singular limit of a two-phase flow equation with heterogeneities and dynamic capillary pressure. ZAMM, Z. Angew. Math. Mech. 94 (2014) 678–689. | DOI | MR | Zbl

C.I. Kondo and P.G. Lefloch, Zero diffusion-dispersion limits for scalar conservation laws. SIAM J. Math. Anal. 33 (2002) 1320–1329,. | DOI | MR | Zbl

S.N. Kružkov, First order quasilinear equations with several independent variables. Mat. Sb. (N.S) 81 (1970) 228–255. | MR | Zbl

P.G. Lefloch, Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves. Lectures in Mathematics. Birkhäuser, Basel (2002). | MR | Zbl

P.G. Lefloch and S. Mishra, Numerical methods with controlled dissipation for small-scale dependent shocks. Acta Numer. 23 (2014) 743–816. | DOI | MR | Zbl

R.J. Leveque, Numerical Methods for Conservation Laws. Birkhauser Verlag, Boston (1992). | MR | Zbl

Y. Lu, Hyperbolic conservation laws and the compensated compactness method. Vol. 128 of Chapman and Hall/CRC Monographs and surveys in Pure and Applied Mathematics. Chapman and Hall/CRC, Boca Raton, FL (2003). | MR | Zbl

F. Murat, Compacite par compensation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5 (1978) 489–507. | Numdam | MR | Zbl

O.A. Oleĭnik, Convergence of certain difference schemes. Soviet Math. Dokl. 2 (1961) 313–316. | MR | Zbl

B. Perthame and P.E. Souganidis, A limiting case for velocity averaging. Ann. Sci. E.N.S. 31 (1998) 591–598. | Numdam | MR | Zbl

M.E. Schonbek, Convergence of solution to nonlinear dispersive equations. Commun. Partial Differ. Equ. 7 (1982) 959–1000. | DOI | MR | Zbl

L. Tartar, Compensated compactness and applications to partial differential equations. Vol. 4 of Research Notes in Mathematics, Nonlinear Analysis and Mechanics. Heriot-Symposium 4 (1979) 136–212. | MR | Zbl

J.D. Towers, Convergence of a finite difference scheme for conservation laws with a discontinous flux. SIAM. J. Numer. Anal. 38 (2000) 681–698. | DOI | MR | Zbl

C.J. Van Duijn, L.A. Peletier and I.S. Pop, A new class of entropy solutions of the Buckley–Leverett equation. SIAM J. Math. Anal. 39 (2007) 507–536. | DOI | MR | Zbl

A. Vasseur, Strong traces for solutions of multidimensional scalar conservation laws. Arch. Rational Mech. Anal. 160 (2001) 181–193. | DOI | MR | Zbl

A.I. Vol’Pert, Generalized solutions of degenerate second-order quasilinear parabolic and elliptic equations. Adv. Differ. Equ. 5 (2000) 1493–1518. | MR | Zbl

C.C. Wu, New theory of MHD shock waves, in Viscous Profiles and Numerical Methods for Shock Waves, edited by M. Shearer. SIAM, Philadelphia, PA (1991) 209–236. | MR | Zbl

Cité par Sources :