An Interior Penalty Method with C 0 Finite Elements for the Approximation of the Maxwell Equations in Heterogeneous Media: Convergence Analysis with Minimal Regularity
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 5, pp. 1457-1489.

The present paper proposes and analyzes an interior penalty technique using C 0 -finite elements to solve the Maxwell equations in domains with heterogeneous properties. The convergence analysis for the boundary value problem and the eigenvalue problem is done assuming only minimal regularity in Lipschitz domains. The method is shown to converge for any polynomial degrees and to be spectrally correct.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2015086
Classification : 65N25, 65F15, 35Q60
Mots-clés : Finite elements, Maxwell equations, eigenvalue, discontinuous coefficients, spectral approximation
Bonito, Andrea 1 ; Guermond, Jean-Luc 1 ; Luddens, Francky 2

1 Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA.
2 LIMSI, UPR 3251 CNRS, BP 133, 91403 Orsay cedex, France.
@article{M2AN_2016__50_5_1457_0,
     author = {Bonito, Andrea and Guermond, Jean-Luc and Luddens, Francky},
     title = {An {Interior} {Penalty} {Method} with $C^{0}$ {Finite} {Elements} for the {Approximation} of the {Maxwell} {Equations} in {Heterogeneous} {Media:} {Convergence} {Analysis} with {Minimal} {Regularity}},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1457--1489},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {5},
     year = {2016},
     doi = {10.1051/m2an/2015086},
     zbl = {1352.78014},
     mrnumber = {3554549},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2015086/}
}
TY  - JOUR
AU  - Bonito, Andrea
AU  - Guermond, Jean-Luc
AU  - Luddens, Francky
TI  - An Interior Penalty Method with $C^{0}$ Finite Elements for the Approximation of the Maxwell Equations in Heterogeneous Media: Convergence Analysis with Minimal Regularity
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 1457
EP  - 1489
VL  - 50
IS  - 5
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2015086/
DO  - 10.1051/m2an/2015086
LA  - en
ID  - M2AN_2016__50_5_1457_0
ER  - 
%0 Journal Article
%A Bonito, Andrea
%A Guermond, Jean-Luc
%A Luddens, Francky
%T An Interior Penalty Method with $C^{0}$ Finite Elements for the Approximation of the Maxwell Equations in Heterogeneous Media: Convergence Analysis with Minimal Regularity
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 1457-1489
%V 50
%N 5
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2015086/
%R 10.1051/m2an/2015086
%G en
%F M2AN_2016__50_5_1457_0
Bonito, Andrea; Guermond, Jean-Luc; Luddens, Francky. An Interior Penalty Method with $C^{0}$ Finite Elements for the Approximation of the Maxwell Equations in Heterogeneous Media: Convergence Analysis with Minimal Regularity. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 5, pp. 1457-1489. doi : 10.1051/m2an/2015086. http://archive.numdam.org/articles/10.1051/m2an/2015086/

R. A. Adams and J.J. Fournier, Sobolev spaces, 2nd edition. Vol. 140 of Pure and Applied Mathematics. Academic Press, New York, NY (2003) 305. | MR | Zbl

D.N. Arnold, R.S. Falk and R. Winther, Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Amer. Math. Soc. (N.S.) 47 (2010) 281–354. | DOI | MR | Zbl

I. Babuška and J. Osborn, Eigenvalue problems. In Finite Element Methods (Part 1). Vol. 2 of Handbook of Numerical Analysis. Elsevier (1991) 641–787. | MR | Zbl

S. Badia and R. Codina, A nodal-based finite element approximation of the Maxwell problem suitable for singular solutions. SIAM J. Numer. Anal. 50 (2012) 398–417. | DOI | MR | Zbl

A. Bonito and J.-L. Guermond, Approximation of the eigenvalue problem for the time harmonic Maxwell system by continuous Lagrange finite elements. Math. Comput. 80 (2011) 1887–1910. | DOI | MR | Zbl

A. Bonito, J.-L. Guermond and F. Luddens, Regularity of the Maxwell equations in heterogeneous media and Lipschitz domains. J. Math. Anal. Appl. 408 (2013) 498–512. | DOI | MR | Zbl

J. Bramble and J. Pasciak, A new approximation technique for div-curl systems. Math. Comput. 73 (2004) 1739–1762 (electronic). | DOI | MR | Zbl

J. Bramble, T. Kolev and J. Pasciak, The approximation of the Maxwell eigenvalue problem using a least-squares method. Math. Comput. 74 (2005) 1575–1598 (electronic). | DOI | MR | Zbl

A. Buffa and P. Ciarlet Jr., On traces for functional spaces related to Maxwell’s equations. I. An integration by parts formula in Lipschitz polyhedra. Math. Methods Appl. Sci. 24 (2001) 9–30. | DOI | MR | Zbl

A. Buffa, P. Ciarlet Jr and E. Jamelot, Solving electromagnetic eigenvalue problems in polyhedral domains with nodal finite elements. Numer. Math. 113 (2009) 497–518. | DOI | MR | Zbl

A. Buffa, P. Houston and I. Perugia, Discontinuous Galerkin computation of the Maxwell eigenvalues on simplicial meshes. J. Comput. Appl. Math. 204 (2007) 317–333. | DOI | MR | Zbl

A. Buffa and I. Perugia, Discontinuous Galerkin approximation of the Maxwell eigenproblem. SIAM J. Numer. Anal. 44 (2006) 2198–2226 (electronic). | DOI | MR | Zbl

S.H. Christiansen and R. Winther, Smoothed projections in finite element exterior calculus. Math. Comput. 77 (2008) 813–829. | DOI | MR | Zbl

R. Clough and J. Tocher, Finite element stiffness matrices for analysis of plates in bending. In Conf. on Matrix Methods in Structural Mechanics. Wright-Patterson A.F.B. (1965) 515–545.

M. Costabel, A coercive bilinear form for Maxwell’s equations. J. Math. Anal. Appl. 157 (1991) 527–541. | DOI | MR | Zbl

M. Costabel and M. Dauge, Weighted Regularization of Maxwell Equations in Polyhedral Domains. Numer. Math. 93 (2002) 239–278. | DOI | MR | Zbl

M. Dauge, Benchmark for Maxwell (2009). Available at http://perso.univ-rennes1.fr/monique.dauge/benchmax.html.

H. Duan, P. Lin and R.C.E. Tan, C 0 elements for generalized indefinite Maxwell equations. Numer. Math. 122 (2012) 61–99. | DOI | MR | Zbl

H.-Y. Duan, F. Jia, P. Lin and R.C.E. Tan, The local L 2 projected C 0 finite element method for Maxwell problem. SIAM J. Numer. Anal. 47 (2009) 1274–1303. | DOI | MR | Zbl

A. Giesecke, C. Nore, F. Stefani, G. Gerbeth, J. Léorat, W. Herreman, F. Luddens and J.-L. Guermond, Influence of high-permeability discs in an axisymmetric model of the cadarache dynamo experiment. New J. Phys. 14 (2012). | DOI

A. Giesecke, C. Nore, F. Stefani, G. Gerbeth, J. Léorat, F. Luddens and J.-L. Guermond, Electromagnetic induction in non-uniform domains. Geophys. Astrophys. Fluid Dyn. 104 (2010) 505–529. | DOI | MR

P. Grisvard, Elliptic problems in nonsmooth domains. Vol. 24 of Monographs and Studies in Mathematics. Pitman, Advanced Publishing Program, Boston, MA (1985). | MR | Zbl

J.-L. Guermond, The LBB condition in fractional Sobolev spaces and applications. IMA J. Numer. Anal. 29 (2009) 790–805. | DOI | MR | Zbl

J.-L. Guermond, J. Léorat, F. Luddens, C. Nore and A. Ribeiro, Effects of discontinuous magnetic permeability on magnetodynamic problems. J. Comput. Phys. 230 (2011) 6299–6319. | DOI | MR | Zbl

W. Herreman, C. Nore, L. Cappanera and J.-L. Guermond, Tayler instability in liquid metal columns and liquid metal batteries. J. Fluid Mech. 771 (2015) 79–114. | DOI | MR

S. Hofmann, M. Mitrea and M. Taylor, Geometric and transformational properties of Lipschitz domains, Semmes–Kenig–Toro domains, and other classes of finite perimeter domains. J. Geom. Anal. 17 (2007) 593–647. | DOI | MR | Zbl

R. Hollerbach, C. Nore, P. Marti, S. Vantieghem, F. Luddens and J. Léorat, Parity-breaking flows in precessing spherical containers. Phys. Rev. E 87 (2013). | DOI

R. Lehoucq, D. Sorensen and C. Yang, ARPACK users’ guide. Solution of large-scale eigenvalue problems with implictly restarted Arnoldi methods. Vol. 6 of Software, Environments and Tools. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998. | MR | Zbl

J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1. Dunod, Paris, France (1968). | MR | Zbl

F. Luddens, Analyse théorique et numérique des équations de la magnétohydrodynamique: applications à l’effet dynamo. Ph.D. thesis, December 6 (2012).

R. Monchaux, M. Berhanu, M. Bourgoin, P. Odier, M. Moulin, J.-F. Pinton, R. Volk, S. Fauve, N. Mordant, F. Pétrélis, A. Chiffaudel, F. Daviaud, B. Dubrulle, C. Gasquet, L. Marié and F. Ravelet, Generation of magnetic field by a turbulent flow of liquid sodium. Phys. Rev. Lett. 98 (2007) 044502. | DOI

P. Monk, Finite element methods for Maxwell’s equations. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2003). | MR | Zbl

J. Osborn, Spectral Approximation for Compact Operators. Math. Comput. 29 (1975) 712–725. | DOI | MR | Zbl

M.J.D. Powell and M.A. Sabin, Piecewise quadratic approximations on triangles. ACM Trans. Math. Software 3 (1977) 316–325. | DOI | MR | Zbl

J. Schöberl, A posteriori error estimates for Maxwell equations. Math. Comput. 77 (2008) 633–649. | DOI | MR | Zbl

L. Tartar, An introduction to Sobolev spaces and interpolation spaces. Vol. 3 of Lect. Notes Unione Mat. Italiana. Springer, Berlin (2007). | MR | Zbl

Cité par Sources :