An analysis of galerkin proper orthogonal decomposition for subdiffusion
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 1, pp. 89-113.

In this work, we develop a novel Galerkin-L1-POD scheme for the subdiffusion model with a Caputo fractional derivative of order α(0,1) in time, which is often used to describe anomalous diffusion processes in heterogeneous media. The nonlocality of the fractional derivative requires storing all the solutions from time zero. The proposed scheme is based on continuous piecewise linear finite elements, L1 time stepping, and proper orthogonal decomposition (POD). By constructing an effective reduced-order model using problem-adapted basis functions, it can significantly reduce the computational complexity and storage requirement. We shall provide a complete error analysis of the scheme under realistic regularity assumptions by means of a novel energy argument. Extensive numerical experiments are presented to verify the convergence analysis and the efficiency of the proposed scheme.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016017
Classification : 65M60, 65M15
Mots-clés : Fractional diffusion, energy argument, proper orthogonal decomposition, error estimates
Jin, Bangti 1 ; Zhou, Zhi 2

1 Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK.
2 Department of Applied Physics and Applied Mathematics, Columbia University, 10027 New York, USA.
@article{M2AN_2017__51_1_89_0,
     author = {Jin, Bangti and Zhou, Zhi},
     title = {An analysis of galerkin proper orthogonal decomposition for subdiffusion},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {89--113},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {1},
     year = {2017},
     doi = {10.1051/m2an/2016017},
     mrnumber = {3601002},
     zbl = {1365.65224},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2016017/}
}
TY  - JOUR
AU  - Jin, Bangti
AU  - Zhou, Zhi
TI  - An analysis of galerkin proper orthogonal decomposition for subdiffusion
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 89
EP  - 113
VL  - 51
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2016017/
DO  - 10.1051/m2an/2016017
LA  - en
ID  - M2AN_2017__51_1_89_0
ER  - 
%0 Journal Article
%A Jin, Bangti
%A Zhou, Zhi
%T An analysis of galerkin proper orthogonal decomposition for subdiffusion
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 89-113
%V 51
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2016017/
%R 10.1051/m2an/2016017
%G en
%F M2AN_2017__51_1_89_0
Jin, Bangti; Zhou, Zhi. An analysis of galerkin proper orthogonal decomposition for subdiffusion. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 1, pp. 89-113. doi : 10.1051/m2an/2016017. http://archive.numdam.org/articles/10.1051/m2an/2016017/

D. Amsallem and U. Hetmaniuk, Error estimates for Galerkin reduced-order models of the semi-discrete wave equation. ESAIM: M2AN 48 (2014) 135–163. | DOI | Numdam | MR | Zbl

B. Berkowitz, A. Cortis, M. Dentz and H. Scher, Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44 (2006) RG 2003. | DOI

D. Chapelle, A. Gariah and J. Sainte-Marie, Galerkin approximation with proper orthogonal decomposition: new error estimates and illustrative examples. ESAIM: M2AN 46 (2012) 731–757. | DOI | Numdam | MR | Zbl

N.J. Ford and A.C. Simpson, The numerical solution of fractional differential equations: speed versus accuracy. Numer. Algorithms 26 (2001) 333–346. | DOI | MR | Zbl

P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston, MA (1985). | MR | Zbl

Y. Hatano and N. Hatano, Dispersive transport of ions in column experiments: An explanation of long-tailed profiles. Water Res. Research 34 (1998) 1027–1033. | DOI

E. Hewitt and K.A. Ross, Abstract Harmonic Analysis. Vol. I: of Structure of Topological Groups. Integration Theory, Group Representations. Springer-Verlag, Berlin (1963). | MR | Zbl

M. Hinze and S. Volkwein, Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition. Comput. Optim. Appl. 39 (2008) 319–345. | DOI | MR | Zbl

T. Iliescu and Z. Wang, Are the snapshot difference quotients needed in the proper orthogonal decomposition? SIAM J. Sci. Comput. 36 (2014) A1221–A1250. | DOI | MR | Zbl

B. Jin, Fast Bayesian approach for parameter estimation. Int. J. Numer. Methods Eng. 76 (2008) 230–252. | DOI | MR | Zbl

B. Jin, R. Lazarov and Z. Zhou, Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51 (2013) 445–466. | DOI | MR | Zbl

B. Jin, R. Lazarov, Y. Liu and Z. Zhou, The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281 (2015) 825–843. | DOI | MR | Zbl

B. Jin, R. Lazarov, J. Pasciak and Z. Zhou, Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J. Numer. Anal. 35 (2015) 561–582. | DOI | MR | Zbl

B. Jin, R. Lazarov and Z. Zhou, An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36 (2016) 197–221. | MR | Zbl

A. Kilbas, H. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006). | MR | Zbl

K. Kunisch and S. Volkwein, Control of the Burgers equation by a reduced-order approach using proper orthogonal decomposition. J. Optim. Theory Appl. 102 (1999) 345–371. | DOI | MR | Zbl

K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math. 90 (2001) 117–148. | DOI | MR | Zbl

K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal. 40 (2002) 492–515. | DOI | MR | Zbl

K. Kunisch and S. Volkwein, Proper orthogonal decomposition for optimality systems. ESAIM: M2AN 42 (2008) 1–23. | DOI | Numdam | MR | Zbl

Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225 (2007) 1533–1552. | DOI | MR | Zbl

M. López-Fernández, C. Lubich and A. Schädle, Adaptive, fast, and oblivious convolution in evolution equations with memory. SIAM J. Sci. Comput. 30 (2008) 1015–1037. | DOI | MR | Zbl

W. Mclean, Regularity of solutions to a time-fractional diffusion equation. ANZIAM J. 52 (2010) 123–138. | DOI | MR | Zbl

W. Mclean, Fast summation by interval clustering for an evolution equation with memory. SIAM J. Sci. Comput. 34 (2012) A3039–A3056. | DOI | MR | Zbl

R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000) 77. | DOI | MR | Zbl

P. Moireau and D. Chapelle, Reduced-order unscented Kalman filtering with application to parameter identification in large-dimensional systems. ESAIM: COCV 17 (2011) 380–405. | Numdam | MR | Zbl

R. Nigmatulin, The realization of the generalized transfer equation in a medium with fractal geometry. Phys. Stat. Sol. B 133 (1986) 425–430. | DOI

R.H. Nochetto, K.G. Siebert and A. Veeser, Theory of adaptive finite element methods: an introduction. In Multiscale, Nonlinear and Adaptive Approximation. Springer (2009) 409–542. | MR | Zbl

I. Podlubny, Fractional Differential Equations. Academic Press, Inc., San Diego, CA (1999). | MR | Zbl

E.W. Sachs and M. Schu, A priori error estimates for reduced order models in finance. ESAIM: M2AN 47 (2013) 449–469. | DOI | Numdam | MR

E.W. Sachs and S. Volkwein, POD-Galerkin approximations in PDE-constrained optimization. GAMM-Mitt. 33 (2010) 194–208. | DOI | MR | Zbl

K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382 (2011) 426–447. | DOI | MR | Zbl

H. Seybold and R. Hilfer, Numerical algorithm for calculating the generalized Mittag–Leffler function. SIAM J. Numer. Anal. 47 (2009) 69–88. | DOI | MR | Zbl

J.R. Singler, New POD error expressions, error bounds, and asymptotic results for reduced order models of parabolic PDEs. SIAM J. Numer. Anal. 52 (2014) 852–876. | DOI | MR | Zbl

L. Sirovich, Turbulence and the dynamics of coherent structures. part i: Coherent structures. Quart. Appl. Math. 45 (1987) 561–571. | DOI | MR | Zbl

Z.-Z. Sun and X. Wu, A fully discrete scheme for a diffusion wave system. Appl. Numer. Math. 56 (2006) 193–209. | DOI | MR | Zbl

Cité par Sources :