Formal deduction of the Saint-Venant–Exner model including arbitrarily sloping sediment beds and associated energy
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 1, pp. 115-145.

In this work we present a deduction of the Saint-Venant–Exner model through an asymptotic analysis of the Navier–Stokes equations. A multi-scale analysis is performed in order to take into account that the velocity of the sediment layer is smaller than the one of the fluid layer. This leads us to consider a shallow water type system for the fluid layer and a lubrication Reynolds equation for the sediment one. This deduction provides some improvements with respect to the classic Saint-Venant–Exner model: (i) the deduced model has an associated energy. Moreover, it allows us to explain why classic models do not have an associated energy and how they can be modified in order to recover a model with this property. (ii) The model incorporates naturally a necessary modification that must be taken into account in order to be applied to arbitrarily sloping beds. Furthermore, we show that in general this modification is different from the ones considered classically. Nevertheless, it coincides with a classic one in the case of constant free surface. (iii) The deduced solid transport discharge naturally depends on the thickness of the moving sediment layer, which allows to ensure sediment mass conservation. Moreover, we include a simplified version of the model for the case of quasi-stationary regimes. Some of these simplified models correspond to a generalization of classic ones such as Meyer-Peter and Müller and Ashida–Michiue models. Three numerical tests are presented to study the evolution of a dune for several definition of the repose angle, to see the influence of the proposed definition of the effective shear stress in comparison with the classic one, and by comparing with experimental data.

DOI : 10.1051/m2an/2016018
Classification : 35Q30, 35Q35, 35Q70, 35Q86, 65Z02, 76D05, 76D09, 86A05, 93A30
Mots-clés : Saint-Venant–Exner, bedload, Reynolds equation
Fernández-Nieto, Enrique D. 1 ; Luna, Tomás Morales de 2 ; Narbona-Reina, Gladys 1 ; Zabsonré, Jean de Dieu 3

1 Dpto. Matemática Aplicada I, ETS Arquitectura, Universidad de Sevilla, Avda. Reina Mercedes N. 2, 41012 Sevilla, Spain.
2 Dpto. de Matemáticas, Universidad de Córdoba, Campus de Rabanales, 14071 Córdoba, Spain.
3 Institut Universitaire de Technologie, Université Polytechnique de Bobo-Dioulasso, 01, BP 1091 Bobo-Dioulasso 01, Burkina Faso.
@article{M2AN_2017__51_1_115_0,
     author = {Fern\'andez-Nieto, Enrique D. and Luna, Tom\'as Morales de and Narbona-Reina, Gladys and Zabsonr\'e, Jean de Dieu},
     title = {Formal deduction of the {Saint-Venant{\textendash}Exner} model including arbitrarily sloping sediment beds and associated energy},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {115--145},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {1},
     year = {2017},
     doi = {10.1051/m2an/2016018},
     mrnumber = {3601003},
     zbl = {1360.35176},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2016018/}
}
TY  - JOUR
AU  - Fernández-Nieto, Enrique D.
AU  - Luna, Tomás Morales de
AU  - Narbona-Reina, Gladys
AU  - Zabsonré, Jean de Dieu
TI  - Formal deduction of the Saint-Venant–Exner model including arbitrarily sloping sediment beds and associated energy
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 115
EP  - 145
VL  - 51
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2016018/
DO  - 10.1051/m2an/2016018
LA  - en
ID  - M2AN_2017__51_1_115_0
ER  - 
%0 Journal Article
%A Fernández-Nieto, Enrique D.
%A Luna, Tomás Morales de
%A Narbona-Reina, Gladys
%A Zabsonré, Jean de Dieu
%T Formal deduction of the Saint-Venant–Exner model including arbitrarily sloping sediment beds and associated energy
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 115-145
%V 51
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2016018/
%R 10.1051/m2an/2016018
%G en
%F M2AN_2017__51_1_115_0
Fernández-Nieto, Enrique D.; Luna, Tomás Morales de; Narbona-Reina, Gladys; Zabsonré, Jean de Dieu. Formal deduction of the Saint-Venant–Exner model including arbitrarily sloping sediment beds and associated energy. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 1, pp. 115-145. doi : 10.1051/m2an/2016018. http://archive.numdam.org/articles/10.1051/m2an/2016018/

K. Ashida and M. Michiue, Study on hydraulic resistance and bedload transport rate in alluvial streams. JSCE Tokyo 206 (1972) 59–69.

P. Aussillous, J. Chauchat, M. Pailha, M. Médale and E. Guazzelli, Investigation of the mobile granular layer in bed-load transport. J. Fluid Mech. 736 (2013) 594–615. | DOI | Zbl

R.A. Bagnold, The Flow of Cohesionless Grains in Fluids. Roy. Soc. London Philos. Trans. Ser. A: Math. Phys. Sci. 249 (1956) 235–297. | DOI | MR | Zbl

R.A. Bagnold, An approach to the sediment transport problem from general physics. In: Physical of Sediments and Transport by Wind and Water. Amer. Society of Civil Engineers (1988).

C. Cassar, M. Nicolas and O. Pouliquen, Submarine granular flows down inclined planes. Phys. Fluids 17 (2005) 103301. | DOI | Zbl

M.J. Castro Díaz, E.D. Fernández-Nieto and A.M. Ferreiro, Sediment transport models in Shallow Water equations and numerical approach by high order finite volume methods. Comput. Fluids 37 (2008) 299–316. | DOI | MR | Zbl

J. Chauchat and M. Médale, A 3D numerical model for incompress-ible two-phase flow of a granular bed submitted to a laminar shearing flow. Comput. Meth. Appl. Mech. Eng. 199 (2010) 439–449. | DOI | MR | Zbl

F. Charru, Interface boundary value problem for the Navier–Stokes equations in thin domains. J. Differ. Eq. 208 (2005) 449–493. | MR | Zbl

F. Charru, Selection of the ripple length on a granular bed sheared by a liquid flow. Phys. Fluids 18 (2006) 121508. | DOI | Zbl

I.D. Chueskov, G. Raugel and A.M. Rekalo, Selection of ripple length on a granular bed sheared by a liquid flow. Phys. Fluids 18 (2006) 121508. | Zbl

M. Church, P. Biron and A. Roy, Gravel Bed Rivers: Processes, Tools, Environments. John Wiley & Sons (2012).

G. Cimatti, A Rigorous Justification of the Reynolds Equation. Quart. Appl. Math. XLV 4 (1987) 627–644. | DOI | MR | Zbl

M. Colombini, Revisiting the linear theory of sand dune formation. J. Fluid Mech. 502 1–6 (2004). | DOI | MR | Zbl

W.F. Cope, The hydrodynamic theory of film lubrication. Proc. R. Soc. London, Ser. A 197 (1949) 201–217. | DOI | Zbl

S. Cordier, C. Lucas and J.D.D. Zabsonré, A two time-scale model for tidal bed-load transport. Commun. Math. Sci. 10 (2012) 875–888. | DOI | MR | Zbl

H.A. Einstein, Formulas for the transportation of bedload. ASCE 107 (1942) 561–575.

F. Exner, Uber die wechselwirkung zwischen wasser und geschiebe in flussen, Sitzungsber. Akad. Wissenschaften pt. IIa. Bd. 134 (1925). | JFM

F. Engelund and J. Dresoe. A sediment transport model for straight alluvial channels. Nordic Hydrol. 7 (1976) 293–306. | DOI

F. Engelund and E. Hansen, A monograph on sediment transport in alluvial streams. Danish Technical Press, Copenhagen (1967).

F. Luque and V. Beek, Erosion and transport of bedload sediment. J. Hydraulaul. Res. 14 (1976) 127–144. | DOI

E.D. Fernández-Nieto, Modelling and numerical simulation of submarine sediment shallow flows: transport and avalanches. SeMA J. 49 (2009) 83–103. | MR | Zbl

E.D. Fernández-Nieto, F. Bouchut, D. Bresch, J.M. Castro and A. Mangeney, A new-Savage-Hutter type model for submarine avalanches and genrated tsunami. J. Comput. Phys. 227 (2008) 7720–7754. | DOI | MR | Zbl

E.D. Fernández-Nieto, G. Narbona-Reina and J.D.D. Zabsonré, Formal derivation of a bilayer model coupling Shallow Water and Reynolds equations: evolution of a thin pollutant layer over the water. Eur. J. Appl. Math. 24 (2013) 803–833. | DOI | MR | Zbl

E.D. Fernández-Nieto, C. Lucas, T. Morales De Luna and S. Cordier, On the influence of the thickness of the sediment moving layer in the definition of the bedload trasport formula in Exner systems. Comp. Fluids 91 (2014) 87–106. | DOI | MR | Zbl

Y. Forterre and O. Pouliquen, Flows of dense granular media. Ann. Rev. Fluid Mech. 40 (2008) 1–24. | DOI | MR | Zbl

A.C. Fowler, N. Kopteva and C. Oakley, The formation of river channel. SIAM J. Appl. Math. 67 (2007) 1016–1040. | DOI | MR | Zbl

J. Fredsøe, On the development of dunes in erodible channel. J. Fluid Mech. 64 (1974) 1–16. | DOI | Zbl

G. Garegnani, G. Rosatti and L. Bonaventura, Free surface flows over mobile bed: mathematical analysis and numerical modeling of coupled and decoupled approaches. Commun. Appl. Ind. Math. 2 (2011). | MR | Zbl

A.J. Grass, Sediments transport by waves and currents. SERC London Cent. Mar. Technol., Report No. FL29 (1981).

F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant system for laminar Shallow-Water; Numerical validation. Disc. Cont. Dynam. Syst. Series B 1 (2001) 89–102. | MR | Zbl

R. Jackson, The Dynamics of Fluidized Particles. Cambridge University Press, Cambridge, (2000). | MR | Zbl

A.A. Kalinske, Criteria for determining sand transport by surface creep and saltation. Trans. AGU. 23 (1942) 639–643. | DOI

A. Kovacs and G. Parker. A new vectorial bedload formulation and its application to the time evolution of straight river channels. J. Fluid Mech. 267 (1994) 153–183. | DOI | Zbl

K.K.J. Kouakou and P.Y. Lagrée, Evolution of a model dune in a shear flow. Eur. J. Mech. B/Fluids 25 (2006) 348–359. | DOI | MR | Zbl

P.Y. Lagrée, L. Staron and S. Popinet The granular column collapse as a continuum: validity of a two-dimensional Navier–Stokes model with a μ(I)-rheology. J. Fluid. Mech. 686 (2011) 378–408. | DOI | MR | Zbl

D.K. Lysne, Movement of sand in tunnels. Proc. A.S.C.E. 95 (1969) 1835–1846.

F. Marche, Theoretical and numerical study of Shallow Water models. Applications to Nearshore hydrodynamics. Ph.D. thesis, University of Bordeaux (2005).

Meyer-Peter and R. Müller, Formulas for bed-load transport. Rep. 2nd Meet. Int. Assoc. Hydraul. Struct. Res., Stockolm 1948. ASCE. 107 (1942) 561–575.

T. Morales De Luna, J.M. Castro-Díaz and C. Parés-Madroñal, A Duality Method for Sediment Transport Based on a Modified Meyer-Peter and Müller Model. J. Sci. Comput. 48 (2009) 258–273. | DOI | MR | Zbl

T. Morales De Luna, J.M. Castro-Díaz, C. Parés-Madroñal and E.D. Fernández-Nieto, On a Shallow Water Model for the Simulation of Turbidity Currents. Commun. Comput. Phys. 6 (2011) 848–882. | DOI | MR | Zbl

G. Narbona-Reina, J.D. Zabsonré, E.D. Fernández-Nieto and D. Bresch, Derivation of a bi-layer Shallow–Water model with viscosity. Numerical validation. CMES 43 (2009) 27–71. | MR | Zbl

P. Nielsen, Coastal Bottom Boundary Layers and Sediment Transport. World Scientific Publishing, Singapore. Adv. Ser. Ocean Eng. 4 (1992). | DOI

A. Oron, S.H. Davis and S.G. Bankoff, Long scale evolution of thin films. Rev. Mod. Phys. 69 (1997). | DOI

M. Ouriemi, P. Aussillous and E. Guazzelli, Sediment dynamics. Part I: Bed-load transport by shearing flows. J. Fluid Mech. 636 (2009) 295–319. | DOI | MR | Zbl

M. Pailha, J. Chauchat, P. Aussillous, M. Médale and E. Guazzelli. Bed-load Transport. Part 2: The Mobile Granular Layer. Ph.D. thesis (2011).

G. Parker, G. Seminara and L. Solari, Bedload at low Shields stress on arbitrarily sloping beds: Alternative entrainment formulation. Water Resources Res. 29 (2003) 7.

C. Parés and M.J. Castro, On the well-balance property of Roe’s method for nonconservative hyperbolic systems. Applications to shallow-water systems. ESAIM: M2AN 38 (2004) 821–852. | DOI | Numdam | MR | Zbl

E. Peña González, Estudio numérico y experimental del transporte de sedimentos en cauces aluviales. Ph.D. thesis, Universidade da Coruña, Grupo de Ingeniería del agua y del medio ambiente (2002).

T. Revil-Baudard and J. Chauchat, A two-phase model for sheet flow regime based on dense granular flow rheology. J. Geophys. Res. Oceans 118 (2013) 619–634. | DOI

M. Peybernes, Analyse de problème mathématiques de la mécanique des fluides de type bi-couche et à frontière libre. Ph.D. thesis, University of Pascal Paoli (2006).

O. Reynolds, On the theory of lubrication and its application to Mr. Beauchamp Tower’s experiment. Phil. Trans. R. Soc. London Part I (1886) 228–310.

L.C. Van Rijn, Sediment transport (I): bedload transport. J. Hydraul. Div. Proc. ASCE 110 (1984) 1431–56. | DOI

P.C. Roos, Seabed Pattern Dynamics and Offshore Sand Extraction. Ph.D. thesis, University of Twente (2004).

H. Schuttelaars, Evolution and Stability Analysis of Bottom Patterns in Tidal Embayements. Ph.D. thesis, Utrecht University (1997).

G. Seminara, L. Solari and G. Parker, Bedload at low Shields stress on arbitrarily sloping beds: Failure of the Bagnold hypothesis. Water Resources Res. 38 (2002) 11. | DOI

N. Struiksma. K.W. Olesen. C. Flokstra and H.J. De Vriend, Bed deformation in curved alluvial channels. J. Hudraulic Res. 23 (1985) 57–79. | DOI

P. Tassi, S. Rhebergen, C. Vionnet and O. Bokhove, A discontinuous Galerkin finite element model for morphodynamical evolution in shallow flows. Comp. Meth. App. Mech. Eng. 197 (2008) 2930–2947. | DOI | MR | Zbl

H.J. De Vriend, J. Zyserman, J. Nicholson, J.A. Roelvink, P. Péchon and H.N. Southgate, Medium-term 2DH coastal area modelling. Coastal Engineering 21 (1993) 193–224. | DOI

J.D. Zabsonré, Modèles visqueux en sédimentation et stratification: obtention formelle, stabilité théorique et schémas volumes finis bien équilibrés. Ph.D. thesis, Université de Savoie (2008).

J.D.D. Zabsonré, C. Lucas and E.D. Fernández-Nieto, An energetically consistent viscous sedimentation model. Math. Models Methods Appl. Sci. 19 (2009) 477–499. | DOI | MR | Zbl

Cité par Sources :