We apply the concept of an M-decomposition in the framework of steady-state diffusion problems to construct local spaces defining superconvergent hybridizable discontinuous Galerkin methods as well as their companion sandwiching mixed methods in ℝ3 with tetrahedral, pyramidal, prismatic, and hexahedral elements.
Accepté le :
DOI : 10.1051/m2an/2016023
Mots-clés : Hybridizable discontinuous Galerkin methods, superconvergence, polyhedral meshes
@article{M2AN_2017__51_1_365_0, author = {Cockburn, Bernardo and Fu, Guosheng}, title = {Superconvergence by {M-decompositions.} {Part} {III:} {Construction} of three-dimensional finite elements}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {365--398}, publisher = {EDP-Sciences}, volume = {51}, number = {1}, year = {2017}, doi = {10.1051/m2an/2016023}, mrnumber = {3601012}, zbl = {1412.65137}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2016023/} }
TY - JOUR AU - Cockburn, Bernardo AU - Fu, Guosheng TI - Superconvergence by M-decompositions. Part III: Construction of three-dimensional finite elements JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 365 EP - 398 VL - 51 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2016023/ DO - 10.1051/m2an/2016023 LA - en ID - M2AN_2017__51_1_365_0 ER -
%0 Journal Article %A Cockburn, Bernardo %A Fu, Guosheng %T Superconvergence by M-decompositions. Part III: Construction of three-dimensional finite elements %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 365-398 %V 51 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2016023/ %R 10.1051/m2an/2016023 %G en %F M2AN_2017__51_1_365_0
Cockburn, Bernardo; Fu, Guosheng. Superconvergence by M-decompositions. Part III: Construction of three-dimensional finite elements. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 1, pp. 365-398. doi : 10.1051/m2an/2016023. http://archive.numdam.org/articles/10.1051/m2an/2016023/
Finite element differential forms on cubical meshes. Math. Comp. 83 (2014) 1551–1570. | DOI | MR | Zbl
and ,Mixed finite element methods for second order elliptic problems in three variables. Numer. Math. 51 (1987) 237–250. | DOI | MR | Zbl
, , and ,Efficient rectangular mixed finite element methods in two and three space variables. RAIRO: M2AN 21 (1987) 581–604. | Numdam | MR | Zbl
, , and ,Prismatic mixed finite elements for second order elliptic problems. Calcolo 26 (1989) 135–148 (1990). | DOI | MR | Zbl
and ,Superconvergence by M-decompositions. Part II: Construction of two-dimensional finite elements. ESAIM: M2AN 51 (2017) 165–186. | DOI | Numdam | MR | Zbl
and ,B. Cockburn, G. Fu and F.-J. Sayas, Superconvergence by M-decompositions. Part I: General theory for HDG methods for diffusion. To appear in Math. Comp. (2016). | DOI | MR
Commuting diagrams for the TNT elements on cubes. Math. Comp. 83 (2014) 603–633. | DOI | MR | Zbl
and ,Conditions for superconvergence of HDG methods for second-order eliptic problems. Math. Comp. 81 (2012) 1327–1353. | DOI | MR | Zbl
, and ,F. Fuentes, B. Keith, L. Demkowicz and S. Nagaraj, Orientation embedded high order shape functions for the exact sequence elements of all shapes. Preprint [math.NA]. [v2] (2015). | arXiv | MR
Mixed finite elements in R3. Numer. Math. 35 (1980) 315–341. | DOI | MR | Zbl
,A new family of mixed finite elements in R3. Numer. Math. 50 (1986) 57–81. | DOI | MR | Zbl
,High-order conforming finite elements on pyramids. IMA J. Numer. Anal. 32 (2012) 448–483. | DOI | MR | Zbl
and ,Numerical integration for high order pyramidal finite elements. ESAIM: M2AN 46 (2012) 239–263. | DOI | Numdam | MR | Zbl
and ,Cité par Sources :