Superconvergence by M-decompositions. Part III: Construction of three-dimensional finite elements
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 1, pp. 365-398.

We apply the concept of an M-decomposition in the framework of steady-state diffusion problems to construct local spaces defining superconvergent hybridizable discontinuous Galerkin methods as well as their companion sandwiching mixed methods in ℝ3 with tetrahedral, pyramidal, prismatic, and hexahedral elements.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016023
Classification : 65M60, 65N30, 58J32, 65N15
Mots-clés : Hybridizable discontinuous Galerkin methods, superconvergence, polyhedral meshes
Cockburn, Bernardo 1 ; Fu, Guosheng 1

1 School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA.
@article{M2AN_2017__51_1_365_0,
     author = {Cockburn, Bernardo and Fu, Guosheng},
     title = {Superconvergence by {M-decompositions.} {Part} {III:} {Construction} of three-dimensional finite elements},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {365--398},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {1},
     year = {2017},
     doi = {10.1051/m2an/2016023},
     mrnumber = {3601012},
     zbl = {1412.65137},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2016023/}
}
TY  - JOUR
AU  - Cockburn, Bernardo
AU  - Fu, Guosheng
TI  - Superconvergence by M-decompositions. Part III: Construction of three-dimensional finite elements
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 365
EP  - 398
VL  - 51
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2016023/
DO  - 10.1051/m2an/2016023
LA  - en
ID  - M2AN_2017__51_1_365_0
ER  - 
%0 Journal Article
%A Cockburn, Bernardo
%A Fu, Guosheng
%T Superconvergence by M-decompositions. Part III: Construction of three-dimensional finite elements
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 365-398
%V 51
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2016023/
%R 10.1051/m2an/2016023
%G en
%F M2AN_2017__51_1_365_0
Cockburn, Bernardo; Fu, Guosheng. Superconvergence by M-decompositions. Part III: Construction of three-dimensional finite elements. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 1, pp. 365-398. doi : 10.1051/m2an/2016023. https://www.numdam.org/articles/10.1051/m2an/2016023/

D.N. Arnold and G. Awanou, Finite element differential forms on cubical meshes. Math. Comp. 83 (2014) 1551–1570. | DOI | MR | Zbl

F. Brezzi, J. Douglas, Jr., R. Durán and M. Fortin, Mixed finite element methods for second order elliptic problems in three variables. Numer. Math. 51 (1987) 237–250. | DOI | MR | Zbl

F. Brezzi, J. Douglas, Jr., M. Fortin and L.D. Marini, Efficient rectangular mixed finite element methods in two and three space variables. RAIRO: M2AN 21 (1987) 581–604. | Numdam | MR | Zbl

Z. Chen and J. Douglas, Jr., Prismatic mixed finite elements for second order elliptic problems. Calcolo 26 (1989) 135–148 (1990). | DOI | MR | Zbl

B. Cockburn and G. Fu, Superconvergence by M-decompositions. Part II: Construction of two-dimensional finite elements. ESAIM: M2AN 51 (2017) 165–186. | DOI | Numdam | MR | Zbl

B. Cockburn, G. Fu and F.-J. Sayas, Superconvergence by M-decompositions. Part I: General theory for HDG methods for diffusion. To appear in Math. Comp. (2016). | DOI | MR

B. Cockburn and W. Qiu, Commuting diagrams for the TNT elements on cubes. Math. Comp. 83 (2014) 603–633. | DOI | MR | Zbl

B. Cockburn, W. Qiu and K. Shi, Conditions for superconvergence of HDG methods for second-order eliptic problems. Math. Comp. 81 (2012) 1327–1353. | DOI | MR | Zbl

F. Fuentes, B. Keith, L. Demkowicz and S. Nagaraj, Orientation embedded high order shape functions for the exact sequence elements of all shapes. Preprint [math.NA]. [v2] (2015). | arXiv | MR

J.-C. Nédélec, Mixed finite elements in R3. Numer. Math. 35 (1980) 315–341. | DOI | MR | Zbl

J.-C. Nédélec, A new family of mixed finite elements in R3. Numer. Math. 50 (1986) 57–81. | DOI | MR | Zbl

N. Nigam and J. Phillips, High-order conforming finite elements on pyramids. IMA J. Numer. Anal. 32 (2012) 448–483. | DOI | MR | Zbl

N. Nigam and J. Phillips, Numerical integration for high order pyramidal finite elements. ESAIM: M2AN 46 (2012) 239–263. | DOI | Numdam | MR | Zbl

  • Anantharamu, Sreevatsa; Mahesh, Krishnan A Non‐Dissipative, Energy‐Conserving, Arbitrary High‐Order Numerical Method and Its Efficient Implementation for Incompressible Flow Simulation in Complex Geometries, International Journal for Numerical Methods in Fluids, Volume 97 (2025) no. 4, p. 503 | DOI:10.1002/fld.5369
  • Anantharamu, Sreevatsa; Cockburn, Bernardo Efficient implementation of the hybridized Raviart-Thomas mixed method by converting flux subspaces into stabilizations, Mathematics in Engineering, Volume 6 (2024) no. 2, p. 221 | DOI:10.3934/mine.2024010
  • Cockburn, Bernardo Hybridizable discontinuous Galerkin methods for second-order elliptic problems: overview, a new result and open problems, Japan Journal of Industrial and Applied Mathematics, Volume 40 (2023) no. 3, p. 1637 | DOI:10.1007/s13160-023-00603-9
  • Arbogast, Todd; Wang, Chuning Construction of Supplemental Functions for Direct Serendipity and Mixed Finite Elements on Polygons, Mathematics, Volume 11 (2023) no. 22, p. 4663 | DOI:10.3390/math11224663
  • Cockburn, Bernardo; Xia, Shiqiang An a priori error analysis of adjoint-based super-convergent Galerkin approximations of linear functionals, IMA Journal of Numerical Analysis, Volume 42 (2022) no. 2, p. 1050 | DOI:10.1093/imanum/draa102
  • Chen, Gang; Monk, Peter; Zhang, Yangwen Superconvergent HDG methods for Maxwell’s equations via the M-decomposition, Journal of Computational and Applied Mathematics, Volume 402 (2022), p. 113789 | DOI:10.1016/j.cam.2021.113789
  • Duan, Huoyuan; Wang, Can; Du, Zhijie A Div FOSLS Method Suitable for Quadrilateral RT and Hexahedral RTN H(div)-elements, Journal of Scientific Computing, Volume 93 (2022) no. 3 | DOI:10.1007/s10915-022-02043-y
  • Cockburn, Bernardo The pursuit of a dream, Francisco Javier Sayas and the HDG methods, SeMA Journal, Volume 79 (2022) no. 1, p. 37 | DOI:10.1007/s40324-021-00273-y
  • Vila-Pérez, Jordi; Giacomini, Matteo; Sevilla, Ruben; Huerta, Antonio Hybridisable Discontinuous Galerkin Formulation of Compressible Flows, Archives of Computational Methods in Engineering, Volume 28 (2021) no. 2, p. 753 | DOI:10.1007/s11831-020-09508-z
  • Giacomini, Matteo; Sevilla, Ruben; Huerta, Antonio HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method in MATLAB, Archives of Computational Methods in Engineering, Volume 28 (2021) no. 3, p. 1941 | DOI:10.1007/s11831-020-09502-5
  • Fabien, Maurice S.; Knepley, Matthew G.; Riviere, Beatrice M. Families of interior penalty hybridizable discontinuous Galerkin methods for second order elliptic problems, Journal of Numerical Mathematics, Volume 28 (2020) no. 3, p. 161 | DOI:10.1515/jnma-2019-0027
  • Giacomini, Matteo; Sevilla, Ruben; Huerta, Antonio Tutorial on Hybridizable Discontinuous Galerkin (HDG) Formulation for Incompressible Flow Problems, Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids, Volume 599 (2020), p. 163 | DOI:10.1007/978-3-030-37518-8_5
  • Cui, Jintao; Gao, Fuzheng; Sun, Zhengjia; Zhu, Peng A posteriori error estimate for discontinuous Galerkin finite element method on polytopal mesh, Numerical Methods for Partial Differential Equations, Volume 36 (2020) no. 3, p. 601 | DOI:10.1002/num.22443
  • Arbogast, Todd; Tao, Zhen A direct mixed–enriched Galerkin method on quadrilaterals for two-phase Darcy flow, Computational Geosciences, Volume 23 (2019) no. 5, p. 1141 | DOI:10.1007/s10596-019-09871-2
  • Fu, Guosheng; Jin, Yanyi; Qiu, Weifeng Parameter-free superconvergent H(div)-conforming HDG methods for the Brinkman equations, IMA Journal of Numerical Analysis, Volume 39 (2019) no. 2, p. 957 | DOI:10.1093/imanum/dry001
  • Cockburn, Bernardo; Singler, John R.; Zhang, Yangwen Interpolatory HDG Method for Parabolic Semilinear PDEs, Journal of Scientific Computing, Volume 79 (2019) no. 3, p. 1777 | DOI:10.1007/s10915-019-00911-8
  • Chen, Gang; Monk, Peter; Zhang, Yangwen An HDG Method for the Time-dependent Drift–Diffusion Model of Semiconductor Devices, Journal of Scientific Computing, Volume 80 (2019) no. 1, p. 420 | DOI:10.1007/s10915-019-00945-y
  • Chen, Gang; Cockburn, Bernardo; Singler, John; Zhang, Yangwen Superconvergent Interpolatory HDG Methods for Reaction Diffusion Equations I: An HDGk Method, Journal of Scientific Computing, Volume 81 (2019) no. 3, p. 2188 | DOI:10.1007/s10915-019-01081-3
  • Arbogast, Todd; Tao, Zhen Construction of H(div) H ( div ) -conforming mixed finite elements on cuboidal hexahedra, Numerische Mathematik, Volume 142 (2019) no. 1, p. 1 | DOI:10.1007/s00211-018-0998-7
  • Boffi, Daniele; Di Pietro, Daniele A. Unified formulation and analysis of mixed and primal discontinuous skeletal methods on polytopal meshes, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 52 (2018) no. 1, p. 1 | DOI:10.1051/m2an/2017036
  • Cockburn, Bernardo; Fu, Guosheng Devising superconvergent HDG methods with symmetric approximate stresses for linear elasticity by M-decompositions, IMA Journal of Numerical Analysis, Volume 38 (2018) no. 2, p. 566 | DOI:10.1093/imanum/drx025
  • Aghili, Joubine; Di Pietro, Daniele A. An Advection-Robust Hybrid High-Order Method for the Oseen Problem, Journal of Scientific Computing, Volume 77 (2018) no. 3, p. 1310 | DOI:10.1007/s10915-018-0681-2
  • Fernandez, P.; Christophe, A.; Terrana, S.; Nguyen, N. C.; Peraire, J. Hybridized Discontinuous Galerkin Methods for Wave Propagation, Journal of Scientific Computing, Volume 77 (2018) no. 3, p. 1566 | DOI:10.1007/s10915-018-0811-x
  • Giacomini, Matteo; Karkoulias, Alexandros; Sevilla, Ruben; Huerta, Antonio A Superconvergent HDG Method for Stokes Flow with Strongly Enforced Symmetry of the Stress Tensor, Journal of Scientific Computing, Volume 77 (2018) no. 3, p. 1679 | DOI:10.1007/s10915-018-0855-y
  • Li, Guanglian; Shi, Ke Upscaled HDG Methods for Brinkman Equations with High-Contrast Heterogeneous Coefficient, Journal of Scientific Computing, Volume 77 (2018) no. 3, p. 1780 | DOI:10.1007/s10915-018-0725-7
  • Cockburn, Bernardo; Fu, Guosheng; Qiu, Weifeng Discrete H1-Inequalities for Spaces Admitting M-Decompositions, SIAM Journal on Numerical Analysis, Volume 56 (2018) no. 6, p. 3407 | DOI:10.1137/17m1144830
  • Cockburn, Bernardo; Fu, Guosheng Superconvergence byM-decompositions. Part II: Construction of two-dimensional finite elements, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 51 (2017) no. 1, p. 165 | DOI:10.1051/m2an/2016016
  • Sánchez, M.A.; Ciuca, C.; Nguyen, N.C.; Peraire, J.; Cockburn, B. Symplectic Hamiltonian HDG methods for wave propagation phenomena, Journal of Computational Physics, Volume 350 (2017), p. 951 | DOI:10.1016/j.jcp.2017.09.010
  • Cockburn, Bernardo; Fu, Guosheng A Systematic Construction of Finite Element Commuting Exact Sequences, SIAM Journal on Numerical Analysis, Volume 55 (2017) no. 4, p. 1650 | DOI:10.1137/16m1073352

Cité par 29 documents. Sources : Crossref