This paper introduces new mixed finite element methods (FEMs) of degree
Accepté le :
DOI : 10.1051/m2an/2016024
Mots-clés : Linear elasticity, Stokes equations, non-conforming FEM, Helmholtz decomposition, mixed FEM, adaptive FEM, optimality
@article{M2AN_2017__51_2_399_0, author = {Schedensack, Mira}, title = {Mixed finite element methods for linear elasticity and the {Stokes} equations based on the {Helmholtz} decomposition}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {399--425}, publisher = {EDP-Sciences}, volume = {51}, number = {2}, year = {2017}, doi = {10.1051/m2an/2016024}, mrnumber = {3626404}, zbl = {1398.76125}, language = {en}, url = {https://www.numdam.org/articles/10.1051/m2an/2016024/} }
TY - JOUR AU - Schedensack, Mira TI - Mixed finite element methods for linear elasticity and the Stokes equations based on the Helmholtz decomposition JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 399 EP - 425 VL - 51 IS - 2 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2016024/ DO - 10.1051/m2an/2016024 LA - en ID - M2AN_2017__51_2_399_0 ER -
%0 Journal Article %A Schedensack, Mira %T Mixed finite element methods for linear elasticity and the Stokes equations based on the Helmholtz decomposition %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 399-425 %V 51 %N 2 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2016024/ %R 10.1051/m2an/2016024 %G en %F M2AN_2017__51_2_399_0
Schedensack, Mira. Mixed finite element methods for linear elasticity and the Stokes equations based on the Helmholtz decomposition. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 2, pp. 399-425. doi : 10.1051/m2an/2016024. https://www.numdam.org/articles/10.1051/m2an/2016024/
PEERS: a new mixed finite element for plane elasticity. Japan J. Appl. Math. 1 (1984) 347–367. | DOI | MR | Zbl
, andMixed finite elements for elasticity. Numer. Math. 92 (2002) 401–419. | DOI | MR | Zbl
and ,A stable finite element for the Stokes equations. Calcolo 21 (1985) 337–344. | DOI | MR | Zbl
, and ,Finite elements for symmetric tensors in three dimensions. Math. Comp. 77 (2008) 1229–1251. | DOI | MR | Zbl
, and ,An adaptive Uzawa FEM for the Stokes problem: convergence without the inf-sup condition. SIAM J. Numer. Anal. 40 (2002) 1207–1229. | DOI | MR | Zbl
, and ,Quasi-optimality of adaptive nonconforming finite element methods for the Stokes equations. SIAM J. Numer. Anal. 49 (2011) 970–991. | DOI | MR | Zbl
and ,Fast computation in adaptive tree approximation. Numer. Math. 97 (2004) 193–217. | DOI | MR | Zbl
and ,Adaptive finite element methods with convergence rates. Numer. Math. 97 (2004) 219–268. | DOI | MR | Zbl
, and ,D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Vol. 44 of Springer Series in Computational Mathematics. Springer, Heidelberg (2013). | MR | Zbl
S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Vol. 15 of Texts in Applied Mathematics, 3rd edition. Springer Verlag, New York, Berlin, Heidelberg (2008). | Zbl
D. Braess, Finite Elements. 3rd edition. Cambridge University Press, Cambridge (2007). | MR | Zbl
Linear finite element methods for planar linear elasticity. Math. Comp. 59 (1992) 321–338. | DOI | MR | Zbl
and ,On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8 (1974) 129–151. | Numdam | MR | Zbl
,F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Vol. 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York (1991). | MR | Zbl
A unifying theory of a posteriori finite element error control. Numer. Math. 100 (2005) 617–637. | DOI | MR | Zbl
,A posteriori error estimates for mixed FEM in elasticity. Numer. Math. 81 (1998) 187–209. | DOI | MR | Zbl
and ,C. Carstensen and H. Rabus, Axioms of adaptivity for separate marking. Preprint (2016). | arXiv | MR
Medius analysis and comparison results for first-order finite element methods in linear elasticity. IMA J. Numer. Anal. 35 (2014) 1591–1621. | DOI | MR | Zbl
and ,Quasi-optimal adaptive pseudostress approximation of the Stokes equations. SIAM J. Numer. Anal. 51 (2013) 1715–1734. | DOI | MR | Zbl
, and ,Optimal adaptive nonconforming FEM for the Stokes problem. Numer. Math. 123 (2013) 291–308. | DOI | MR | Zbl
, and ,Approximation by finite element functions using local regularization. Rev. Française Automat. Informat. Recherche Operationnelle 9 (1975) 77–84. | Numdam | MR | Zbl
,Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973) 33–75. | Numdam | MR | Zbl
and ,Nonconforming finite elements for the Stokes problem. Math. Comput. 52 (1989) 437–456. | DOI | MR | Zbl
and ,A nonconforming piecewise quadratic finite element on triangles. Internat. J. Numer. Methods Engrg. 19 (1983) 505–520. | DOI | MR | Zbl
and ,T. Gantumur, Optimal convergence rates for an adaptive mixed finite element method for the Stokes problem. Preprint (2014). | arXiv
V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations. Vol. 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986). | MR | Zbl
Conforming and divergence-free Stokes elements on general triangular meshes. Math. Comput. 83 (2014) 15–36. | DOI | MR | Zbl
and ,Convergence and optimality of the adaptive nonconforming linear element method for the Stokes problem. J. Sci. Comput. 55 (2013) 125–148. | DOI | MR | Zbl
and ,A linear nonconforming finite element method for nearly incompressible elasticity and Stokes flow. Comput. Methods Appl. Mech. Engrg. 124 (1995) 195–212. | DOI | MR | Zbl
and ,Instance optimal Crouzeix–Raviart adaptive finite element methods for the Poisson and Stokes problems. IMA J. Numer. Anal. 36 (2015) 593–617. | DOI | MR | Zbl
and ,The triangular equilibrium element in the solution of plate bending problems. Aeronaut.Quart. 19 (1968) 149–169. | DOI
,H. Rabus, On the quasi-optimal convergence of adaptive nonconforming finite element methods in three examples. Ph. D. thesis, Humboldt-Universität zu Berlin (2014).
P.-A. Raviart and J.M. Thomas, A mixed finite element method for 2nd order elliptic problems. In Mathematical Aspects of Finite Element Methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975). Springer, Berlin (1977) 292–315. | MR | Zbl
M. Schedensack, A class of mixed finite element methods based on the Helmholtz decomposition in computational mechanics. Ph. D. thesis, Humboldt-Universität zu Berlin (2015).
A new discretization for
A new generalization of the
L.R. Scott and M. Vogelius, Conforming finite element methods for incompressible and nearly incompressible continua. In Large-scale Computations in Fluid Mechanics, Part 2 (La Jolla, Calif., 1983). Vol. 22 of Lect. Appl. Math.. Amer. Math. Soc. Providence, RI (1985) 221–244. | MR | Zbl
The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77 (2008) 227–241. | DOI | MR | Zbl
,Approximating gradients with continuous piecewise polynomial functions. Found. Comput. Math. 16 (2016) 723–750. | DOI | MR | Zbl
,R. Verfürth,A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Advances in numerical mathematics. Wiley (1996). | Zbl
Cité par Sources :