Superconvergence of Discontinuous Galerkin methods based on upwind-biased fluxes for 1D linear hyperbolic equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 2, pp. 467-486.

In this paper, we study superconvergence properties of the discontinuous Galerkin method using upwind-biased numerical fluxes for one-dimensional linear hyperbolic equations. A (2k+1)th order superconvergence rate of the DG approximation at the numerical fluxes and for the cell average is obtained under quasi-uniform meshes and some suitable initial discretization, when piecewise polynomials of degree k are used. Furthermore, surprisingly, we find that the derivative and function value approximation of the DG solution are superconvergent at a class of special points, with an order k+1 and k+2, respectively. These superconvergent points can be regarded as the generalized Radau points. All theoretical findings are confirmed by numerical experiments.

DOI : 10.1051/m2an/2016026
Classification : 65M15, 65M60, 65N30
Mots-clés : Discontinuous Galerkin methods, superconvergence, generalized Radau points, upwind-biased fluxes
Cao, Waixiang 1 ; Li, Dongfang 2 ; Yang, Yang 3 ; Zhang, Zhimin 1, 4

1 Beijing Computational Science Research Center, Zhongguancun Software Park II, No. 10 West Dongbeiwang Road, Haidian District, Beijing 100094, P.R. China.
2 School of Mathematics and Statistics, Huazhong University of Science and Technology, 1037 Luoyu Rd, Hongshan, Wuhan, Hubei 430074, P.R. China.
3 Department of Mathematical Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
4 Department of Mathematics, Wayne State University, 42 W. Warren Ave. Detroit, MI 48202, USA.
@article{M2AN_2017__51_2_467_0,
     author = {Cao, Waixiang and Li, Dongfang and Yang, Yang and Zhang, Zhimin},
     title = {Superconvergence of {Discontinuous} {Galerkin} methods based on upwind-biased fluxes for {1D} linear hyperbolic equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {467--486},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {2},
     year = {2017},
     doi = {10.1051/m2an/2016026},
     mrnumber = {3626407},
     zbl = {1367.65127},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2016026/}
}
TY  - JOUR
AU  - Cao, Waixiang
AU  - Li, Dongfang
AU  - Yang, Yang
AU  - Zhang, Zhimin
TI  - Superconvergence of Discontinuous Galerkin methods based on upwind-biased fluxes for 1D linear hyperbolic equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 467
EP  - 486
VL  - 51
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2016026/
DO  - 10.1051/m2an/2016026
LA  - en
ID  - M2AN_2017__51_2_467_0
ER  - 
%0 Journal Article
%A Cao, Waixiang
%A Li, Dongfang
%A Yang, Yang
%A Zhang, Zhimin
%T Superconvergence of Discontinuous Galerkin methods based on upwind-biased fluxes for 1D linear hyperbolic equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 467-486
%V 51
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2016026/
%R 10.1051/m2an/2016026
%G en
%F M2AN_2017__51_2_467_0
Cao, Waixiang; Li, Dongfang; Yang, Yang; Zhang, Zhimin. Superconvergence of Discontinuous Galerkin methods based on upwind-biased fluxes for 1D linear hyperbolic equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 2, pp. 467-486. doi : 10.1051/m2an/2016026. http://archive.numdam.org/articles/10.1051/m2an/2016026/

S. Adjerid and T.C. Massey, Superconvergence of discontinuous Galerkin solutions for a nonlinear scalar hyperbolic problem. Comput. Methods Appl. Mech. Engrg. 195 (2006) 3331–3346. | DOI | MR | Zbl

S. Adjerid and T. Weinhart, Discontinuous Galerkin error estimation for linear symmetric hyperbolic systems. Comput. Methods Appl. Mech. Engrg. 198 (2009) 3113–3129. | DOI | MR | Zbl

S. Adjerid and T. Weinhart, Discontinuous Galerkin error estimation for linear symmetrizable hyperbolic systems. Math. Comp. 80 (2011) 1335–1367. | DOI | MR | Zbl

W. Cao, C.-W. Shu, Yang Yang and Z. Zhang, Superconvergence of discontinuous Galerkin method for 2-D hyperbolic equations. SIAM J. Numer. Anal. 53 (2015) 1651–1671. | DOI | MR | Zbl

W. Cao and Z. Zhang, Superconvergence of Local Discontinuous Galerkin method for one-dimensional linear parabolic equations. Math. Comp. 85 (2016) 63–84. | DOI | MR | Zbl

W. Cao, Z. Zhang and Q. Zou, Superconvergence of Discontinuous Galerkin method for linear hyperbolic equations.SIAM J. Numer. Anal. 52 (2014) 2555–2573. | DOI | MR | Zbl

Y. Cheng and C.-W. Shu, Superconvergence and time evolution of discontinuous Galerkin finite element solutions. J. Comput. Phys. 227 (2008) 9612–9627. | DOI | MR | Zbl

Y. Cheng and C.-W. Shu, Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection-diffusion equations in one space dimension. SIAM J. Numer. Anal. 47 (2010) 4044–4072. | DOI | MR | Zbl

B. Cockburn and C. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for coservation laws, II: Genaral framework. Math. Comput. 52 (1989) 411–435. | MR | Zbl

B. Cockburn and C. Shu, The Runge-Kutta local projection P1-discontinuous Galerkin finite element method for scalar conservation laws, RAIRO: Model. Math Anal. Numer. 25 (1991) 337–361. | Numdam | MR | Zbl

B. Cockburn and C. Shu, The Runge-Kutta discontinuous Galerkin method for conservation laws, V: Multidimensional systems. J. Comput. Phys. 141 (1998) 199–224. | DOI | MR | Zbl

B. Cockburn and C. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35 (1998) 2440–2463. | DOI | MR | Zbl

B. Cockburn, S. Hou and C. Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws, IV: The Multidimensional case. Math. Comp. 54 (1990) 545–581. | MR | Zbl

B. Cockburn, S. Lin and C. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws, III: One dimensional systems. J. Comput. Phys. 84 (1989) 90–113. | DOI | MR | Zbl

S. Gottlieb, C.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods. SIAM Rev. 43 (2001) 89–112. | DOI | MR | Zbl

W. Guo, X. Zhong and J. Qiu, Superconvergence of discontinuous Galerkin and local discontinuous Galerkin methods: eigen-structure analysis based on Fourier approach. J. Comput. Phys. 235 (2013) 458–485. | DOI | MR | Zbl

X. Meng, C.-W. Shu and B. Wu, Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations. Math. Comput. 85 (2016) 1225–1261. | DOI | MR | Zbl

Z. Xie and Z. Zhang, Uniform superconvergence analysis of the discontinuous Galerkin method for a singularly perturbed problem in 1-D. Math. Comput. 79 (2010) 35–45. | DOI | MR | Zbl

Y. Yang and C.-W. Shu, Analysis of optimal superconvergence of discontinuous Galerkin method for linear hyperbolic equations. SIAM J. Numer. Anal. 50 (2012) 3110–3133. | DOI | MR | Zbl

Zuozheng Zhang, Z. Xie and Z. Zhang, Superconvergence of discontinuous Galerkin methods for convection-diffusion problems. J. Sci. Comput. 41 (2009) 70–93. | DOI | MR | Zbl

Cité par Sources :