Preface
ESAIM: Mathematical Modelling and Numerical Analysis , Special Issue – Polyhedral discretization for PDE, Tome 50 (2016) no. 3, pp. 633-634.
@article{M2AN_2016__50_3_633_0,
     author = {Beir\~ao da Veiga, L. and Ern, A.},
     title = {Preface},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {633--634},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {3},
     year = {2016},
     doi = {10.1051/m2an/2016034},
     zbl = {1349.00239},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2016034/}
}
TY  - JOUR
AU  - Beirão da Veiga, L.
AU  - Ern, A.
TI  - Preface
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 633
EP  - 634
VL  - 50
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2016034/
DO  - 10.1051/m2an/2016034
LA  - en
ID  - M2AN_2016__50_3_633_0
ER  - 
%0 Journal Article
%A Beirão da Veiga, L.
%A Ern, A.
%T Preface
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 633-634
%V 50
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2016034/
%R 10.1051/m2an/2016034
%G en
%F M2AN_2016__50_3_633_0
Beirão da Veiga, L.; Ern, A. Preface. ESAIM: Mathematical Modelling and Numerical Analysis , Special Issue – Polyhedral discretization for PDE, Tome 50 (2016) no. 3, pp. 633-634. doi : 10.1051/m2an/2016034. http://archive.numdam.org/articles/10.1051/m2an/2016034/

P.F. Antonietti, L. Formaggia, A. Scotti, M. Verani and N. Verzotti, Mimetic finite difference approximation of flows in fractured porous media. ESAIM: M2AN 50 (2016) 809–832. Doi: | DOI | Numdam | MR | Zbl

B. Ayuso De Dios, K. Lipnikov and G. Manzini, The nonconforming virtual element method. ESAIM: M2AN 50 (2016) 879–904. Doi: | DOI | Numdam | MR | Zbl

L. Beirão Da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. | DOI | MR | Zbl

L. Beirão Da Veiga, F. Brezzi, L.D. Marini and A. Russo, The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24 (2014) 1541–1573. | DOI | MR | Zbl

L. Beirão da Veiga, K. Lipnikov and G. Manzini, The mimetic finite difference method for elliptic problems. Vol. 11 of MS&A. Model. Simul. Appl. Springer-Verlag (2014). | MR | Zbl

L. Beirão Da Veiga, F. Brezzi, L.D. Marini and A. Russo, Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM: M2AN 50 (2016) 727–747. Doi: | DOI | Numdam | MR | Zbl

J. Bonelle and A. Ern, Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes. ESAIM: M2AN 48 (2014) 553–581. | DOI | Numdam | MR | Zbl

F. Brezzi, K. Lipnikov and M. Shashkov, Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43 (2005) 1872–1896. | DOI | MR | Zbl

A. Cangiani, E.H. Georgoulis and P. Houston, hp-version discontinuous galerkin methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 24 (2014) 2009–2041. | DOI | MR | Zbl

A. Cangiani, Z. Dong, E.H. Georgoulis and P. Houston, hp-version discontinuous Galerkin methods for advection-diffusion-reaciton problems on polytopic meshes. ESAIM: M2AN 50 (2016) 699–725. Doi: | DOI | Numdam | MR | Zbl

S.H. Christiansen and A. Gillette, Construction of some minimal finite element systems. ESAIM: M2AN 50 (2016) 833–850. Doi: | DOI | Numdam | MR | Zbl

B. Cockburn, J. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2009) 1319–1365. | DOI | MR | Zbl

B. Cockburn, D.A. Di Pietro and A. Ern, Bridging the Hybrid High-Order and Hybridizable discontinuous Galerkin methods. ESAIM: M2AN 50 (2016) 635–650. Doi: | DOI | Numdam | MR | Zbl

L. Codecasa, R. Specogna and F. Trevisan, Geometrically defined basis functions for polyhedral elements with applications to computational electromagnetics. ESAIM: M2AN 50 (2016) 677–698. Doi: | DOI | Numdam | MR | Zbl

D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Vol. 69 of Math. Appl. Springer-Verlag, Berlin (2012). | MR | Zbl

D.A. Di Pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Engrg. 283 (2015) 1–21. | DOI | MR | Zbl

D.A. Di Pietro, A. Ern and S. Lemaire, An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14 (2014) 461–472. | DOI | MR | Zbl

J. Droniou, R. Eymard, T. Gallouët and R. Herbin, A unified approach to Mimetic Finite Difference, Hybrid Finite Volume and Mixed Finite Volume methods. Math. Models Methods Appl. Sci. 20 (2010) 265–295. | DOI | MR | Zbl

J. Droniou, R. Eymard, T. Gallouët and R. Herbin, Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations. Math. Models Methods Appl. Sci. 23 (2013) 2395–2432. | DOI | MR | Zbl

J. Droniou, R. Eymard and R. Herbin, Gradient schemes: Generic tools for the numerical analysis of diffusion equations. ESAIM: M2AN 50 (2016) 749–781. Doi: | DOI | Numdam | MR | Zbl

A. Gillette and A. Rand, Interpolation error estimates for harmonic coordinates on polytopes. ESAIM: M2AN 50 (2016) 651–676. Doi: | DOI | Numdam | MR | Zbl

V. Gyrya, K. Lipnikov and G. Manzini, The arbitrary order mixed mimetic finite difference method for the diffusion equation. ESAIM: M2AN 50 (2016) 851–877. Doi: | DOI | Numdam | MR | Zbl

I. Perugia, P. Pietra and A. Russo, A plane wave virtual element method for the Helmholtz problem. ESAIM: M2AN 50 (2016) 783–808. Doi: | DOI | Numdam | MR | Zbl

N. Sukumar and A. Tabarraei, Conforming polygonal finite elements. Internat. J. Numer. Methods Engrg. 61 (2004) 2045–2066. | DOI | MR | Zbl

C. Talischi, G.H. Paulino, A. Pereira and I.F.M. Menezes, Polygonal finite elements for topology optimization: A unifying paradigm. Internat. J. Numer. Methods Engrg. 82 (2010) 671–698. | DOI | Zbl

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241 (2013) 103–115. | DOI | MR | Zbl

Cité par Sources :