Standard finite elements for the numerical resolution of the elliptic Monge–Ampère equation: Aleksandrov solutions
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 2, pp. 707-725.

We prove a convergence result for a natural discretization of the Dirichlet problem of the elliptic Monge–Ampère equation using finite dimensional spaces of piecewise polynomial C 1 functions. Discretizations of the type considered in this paper have been previously analyzed in the case the equation has a smooth solution and numerous numerical evidence of convergence were given in the case of non smooth solutions. Our convergence result is valid for non smooth solutions, is given in the setting of Aleksandrov solutions, and consists in discretizing the equation in a subdomain with the boundary data used as an approximation of the solution in the remaining part of the domain. Our result gives a theoretical validation for the use of a non monotone finite element method for the Monge–Ampère equation.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016037
Classification : 35J96, 65N30
Mots-clés : Weak convergence, Monge–Ampère measure, Aleksandrov solution, finite elements
Awanou, Gerard 1

1 Department of Mathematics, Statistics, and Computer Science, M/C 249. University of Illinois at Chicago, Chicago, IL 60607-7045, USA
@article{M2AN_2017__51_2_707_0,
     author = {Awanou, Gerard},
     title = {Standard finite elements for the numerical resolution of the elliptic {Monge{\textendash}Amp\`ere} equation: {Aleksandrov} solutions},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {707--725},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {2},
     year = {2017},
     doi = {10.1051/m2an/2016037},
     mrnumber = {3626416},
     zbl = {1372.35120},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2016037/}
}
TY  - JOUR
AU  - Awanou, Gerard
TI  - Standard finite elements for the numerical resolution of the elliptic Monge–Ampère equation: Aleksandrov solutions
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 707
EP  - 725
VL  - 51
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2016037/
DO  - 10.1051/m2an/2016037
LA  - en
ID  - M2AN_2017__51_2_707_0
ER  - 
%0 Journal Article
%A Awanou, Gerard
%T Standard finite elements for the numerical resolution of the elliptic Monge–Ampère equation: Aleksandrov solutions
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 707-725
%V 51
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2016037/
%R 10.1051/m2an/2016037
%G en
%F M2AN_2017__51_2_707_0
Awanou, Gerard. Standard finite elements for the numerical resolution of the elliptic Monge–Ampère equation: Aleksandrov solutions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 2, pp. 707-725. doi : 10.1051/m2an/2016037. http://archive.numdam.org/articles/10.1051/m2an/2016037/

G. Awanou, Isogeometric method for the elliptic Monge–Ampère equation. In Approximation Theory, XIV, San Antonio, TX, 2013 (2014) 1–13. | MR

G. Awanou, Pseudo transient continuation and time marching methods for Monge–Ampère type equations. Adv. Comput. Math. 41 (2015) 907–935. | DOI | MR | Zbl

G. Awanou, Smooth approximations of the Aleksandrov solution of the Monge–Ampère equation. Commun. Math. Sci. 13 (2015) 427–441. | DOI | MR | Zbl

G. Awanou, Spline element method for Monge–Ampère equations. BIT 55 (2015) 625–646. | DOI | MR | Zbl

G. Awanou, Standard finite elements for the numerical resolution of the elliptic Monge-Ampère equations: classical solutions. IMA J. Numer. Anal. 35 (2015) 1150–1166. | DOI | MR | Zbl

G. Awanou and L. Matamba Messi, A variational method for computing numerical solutions of the Monge–Ampère equation. Preprint: (2015). | arXiv

F.E. Baginski and N. Whitaker, Numerical solutions of boundary value problems for k-surfaces in R 3 . Numer. Methods Partial Differ. Eq. 12 (1996) 525–546. | DOI | MR | Zbl

I.J. Bakelman, Convex analysis and nonlinear geometric elliptic equations. With an obituary for the author by William Rundell, edited by S. D. Taliaferro. Springer-Verlag, Berlin (1994). | MR | Zbl

Z. Błocki, Smooth exhaustion functions in convex domains. Proc. Amer. Math. Soc. 125 (1997) 477–484. | DOI | MR | Zbl

K. Böhmer, On finite element methods for fully nonlinear elliptic equations of second order. SIAM J. Numer. Anal. 46 (2008) 1212–1249. | DOI | MR | Zbl

S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Vol. 15 of Texts Appl. Math. Springer-Verlag, New York, 2nd edn. (2002). | MR | Zbl

S.C. Brenner, T. Gudi, M. Neilan and L.-Y. Sung, C 0 penalty methods for the fully nonlinear Monge–Ampère equation. Math. Comput. 80 (2011) 1979–1995. | DOI | MR | Zbl

K. Brix, Y. Hafizogullari and A. Platen, Solving the Monge–Ampère equations for the inverse reflector problem. Math. Models Methods Appl. Sci. 25 (2015) 803–837. | DOI | MR | Zbl

L.A. Caffarelli, Interior W 2,p estimates for solutions of the Monge–Ampère equation. Ann. Math. 131 (1990) 135–150. | DOI | MR | Zbl

L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge–Ampère equation. Commun. Pure Appl. Math. 37 (1984) 369–402. | DOI | MR | Zbl

W. Dahmen, Convexity and Bernstein-Bézier polynomials. In Curves and surfaces (Chamonix-Mont-Blanc, 1990). Academic Press, Boston, MA (1991) 107–134. | MR | Zbl

O. Davydov and A. Saeed, Stable splitting of bivariate splines spaces by Bernstein-Bézier methods. In Curves and surfaces. Vol. 6920 of Lect. Comput. Sci. Springer, Heidelberg (2012) 220–235. | MR | Zbl

O. Davydov and A. Saeed, Numerical solution of fully nonlinear elliptic equations by Böhmer’s method. J. Comput. Appl. Math. 254 (2013) 43–54. | DOI | MR | Zbl

G. De Philippis and A. Figalli, Second order stability for the Monge–Ampère equation and strong Sobolev convergence of optimal transport maps. Anal. Partial Differ. Eq. 6 (2013) 993–1000. | MR | Zbl

G. De Philippis and A. Figalli, The Monge–Ampère equation and its link to optimal transportation. Bull. Amer. Math. Soc. (N.S.) 51 (2014) 527–580. | DOI | MR | Zbl

S. Dinew, X. Zhang and X. Zhang, The C 2,α estimate of complex Monge–Ampère equation. Indiana Univ. Math. J. 60 (2011) 1713–1722. | DOI | MR | Zbl

X. Feng and M. Neilan, Analysis of Galerkin methods for the fully nonlinear Monge–Ampère equation. J. Sci. Comput. 47 (2011) 303–327. | DOI | MR | Zbl

X. Feng and M. Neilan, Convergence of a fourth-order singular perturbation of the n-dimensional radially symmetric Monge–Ampère equation. Appl. Anal. 93 (2014) 1626–1646. | DOI | MR | Zbl

B. Froese and A. Oberman, Convergent finite difference solvers for viscosity solutions of the elliptic Monge–Ampère equation in dimensions two and higher. SIAM J. Numer. Anal. 49 (2011) 1692–1714. | DOI | MR | Zbl

D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin (2001). Reprint of the 1998 edition. | MR | Zbl

R. Glowinski, Numerical methods for fully nonlinear elliptic equations. In ICIAM 07-6th International Congress on Industrial and Applied Mathematics. Eur. Math. Soc., Zürich (2009) 155–192. | MR | Zbl

P.M. Gruber and J.M. Wills, Handbook of convex geometry. Vol. A, B. North-Holland Publishing Co., Amsterdam (1993). | MR | Zbl

J.-L. Guermond and B. Popov, L 1 -approximation of stationary Hamilton-Jacobi equations. SIAM J. Numer. Anal. 47 (2008/2009) 339–362. | DOI | MR | Zbl

C.E. Gutiérrez, The Monge–Ampère equation. Vol. 44 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston Inc., Boston, MA (2001). | MR | Zbl

C.E. Gutiérrez and T. Van Nguyen, On Monge–Ampère type equations arising in optimal transportation problems. Calc. Var. Partial Differ. Eq. 28 (2007) 275–316. | DOI | MR | Zbl

D. Hartenstine, The Dirichlet problem for the Monge–Ampère equation in convex (but not strictly convex) domains. Electron. J. Differ. Eq. 2006 (2006) 138. | MR | Zbl

J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of convex analysis. Grundlehren Text Editions. Springer-Verlag, Berlin (2001). Abridged version of ıt Convex analysis and minimization algorithms. I [Springer, Berlin, 1993; MR1261420 (95m:90001)] and ıt II [Springer, Berlin, 1993 MR1295240 (95m:90002)]. | MR | Zbl

O. Lakkis and T. Pryer, A finite element method for second order nonvariational elliptic problems. SIAM J. Sci. Comput. 33 (2011) 786–801. | DOI | MR | Zbl

O. Lakkis and T. Pryer, A finite element method for nonlinear elliptic problems. SIAM J. Sci. Comput. 35 (2013) A2025–A2045. | DOI | MR | Zbl

C.P. Niculescu and L.-E. Persson, Convex functions and their applications. A contemporary approach. Vol. 23 of CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York (2006). | MR | Zbl

V.I. Oliker and L.D. Prussner, On the numerical solution of the equation ( 2 z/x 2 )( 2 z/y 2 )-(( 2 z/xy)) 2 =f and its discretizations. I. Numer. Math. 54 (1988) 271–293. | DOI | MR | Zbl

J. Rauch and B. A. Taylor, The Dirichlet problem for the multidimensional Monge–Ampère equation. Rocky Mountain J. Math. 7 (1977) 345–364. | DOI | MR | Zbl

H.L. Royden, Real analysis. Macmillan Publishing Company. 3rd edn. New York (1988). | MR | Zbl

O. Savin, Pointwise C 2,α estimates at the boundary for the Monge–Ampère equation. J. Amer. Math. Soc. 26 (2013) 63–99. | DOI | MR | Zbl

R. Schneider, Convex bodies: the Brunn-Minkowski theory. Vol. 151 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, expanded edition (2014). | MR | Zbl

L. Schumaker, Spline Functions: Computational Methods. Other Titles in Applied Mathematics. Society for Industrial and Applied Mathematics (2015). | MR | Zbl

M.M. Sulman, J.F. Williams and R.D. Russell, An efficient approach for the numerical solution of the Monge–Ampère equation. Appl. Numer. Math. 61 (2011) 298–307. | DOI | MR | Zbl

N.S. Trudinger and X.-J. Wang, Boundary regularity for the Monge–Ampère and affine maximal surface equations. Ann. Math. 167 (2008) 993–1028. | DOI | MR | Zbl

Cité par Sources :