Analytic representation formulas and power series are developed describing the band structure inside periodic photonic and acoustic crystals made from high contrast inclusions. Central to this approach is the identification and utilization of a resonance spectrum for quasi-periodic source free modes. These modes are used to represent solution operators associated with electromagnetic and acoustic waves inside periodic high contrast media. Convergent power series for the Bloch wave spectrum is recovered from the representation formulas. Explicit conditions on the contrast are found that provide lower bounds on the convergence radius. These conditions are sufficient for the separation of spectral branches of the dispersion relation.
Accepté le :
DOI : 10.1051/m2an/2016046
Mots-clés : Bloch waves, band structure, high contrast, periodic medium
@article{M2AN_2017__51_3_889_0, author = {Lipton, Robert and Viator, Robert Jr.}, title = {Bloch waves in crystals and periodic high contrast media}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {889--918}, publisher = {EDP-Sciences}, volume = {51}, number = {3}, year = {2017}, doi = {10.1051/m2an/2016046}, mrnumber = {3666650}, zbl = {1375.35109}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2016046/} }
TY - JOUR AU - Lipton, Robert AU - Viator, Robert Jr. TI - Bloch waves in crystals and periodic high contrast media JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 889 EP - 918 VL - 51 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2016046/ DO - 10.1051/m2an/2016046 LA - en ID - M2AN_2017__51_3_889_0 ER -
%0 Journal Article %A Lipton, Robert %A Viator, Robert Jr. %T Bloch waves in crystals and periodic high contrast media %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 889-918 %V 51 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2016046/ %R 10.1051/m2an/2016046 %G en %F M2AN_2017__51_3_889_0
Lipton, Robert; Viator, Robert Jr. Bloch waves in crystals and periodic high contrast media. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 3, pp. 889-918. doi : 10.1051/m2an/2016046. http://archive.numdam.org/articles/10.1051/m2an/2016046/
H. Ammari, H. Kang and H. Lee, Layer Potential Techniques in Spectral Analysis. American Mathematical Society, 201 Charles Street, Providence, RI (2009). | MR | Zbl
Layer potential techniques in spectral analysis. Part 2: Sensitivity analysis of spectral properties of high contrast band-gap materials. Multiscale Model. Simul. 5 (2006) 646–663. | DOI | MR | Zbl
, , and ,A generalized eigenproblem for the laplacian which arises in lightning. J. Math. Anal. Appl. 341 (2008) 1028–1041. | DOI | MR | Zbl
, and ,The dielectric constant of a composite material - a problem in classical physics. Physics Reports 43 (1978) 377–407. | DOI | MR
,The dielectric constant of a simple cubic array of identical spheres. J. Phys. C. 12 (1979) 4947–4960. | DOI
,The effective conductivity of strongly heterogeneous composites. Proc. R. Soc. A 433 (1991) 353–381. | MR
,Resonanace and double negative behavior in metamaterials. Arch. Ration. Mech. Anal. 209 (2013) 835–868. | DOI | MR | Zbl
and ,Boundary integral operators on lipschitz domains: Elementary results. SIAM J. Math. Anal. 19 (1988) 613–625. | DOI | MR | Zbl
,D. Felbacq and G. Bouchitté, Negative refraction in periodic and random photonic crystals. New J. Phys. (2005) 7.
Band-gap structure of the spectrum of periodic maxwell operators. J. Stat. Phys. 74 (1994) 447–455. | DOI | MR | Zbl
and ,Band-gap structure of spectra of periodic dielectric and acoustic media. 1. scalar model. SIAM J. Appl. Math. 56 (1996) 68–88. | DOI | MR | Zbl
and ,Spectral properties of classical waves in high-contrast periodic media. SIAM J. Appl. Math. 58 (1998) 683–702. | DOI | MR | Zbl
and ,Sub-wavelength plasmonic crystals: Dispersion relations and effective properties. Proc. R. Soc. London A. 486 (2010) 1993–2020. | MR | Zbl
, and ,Convergent power series for fields in positive or negative high-contrast periodic media. Commun. Partial Differ. Eq. 36 (2011) 1016–1043. | DOI | MR | Zbl
, and ,Bounds for effective parameters of heterogeneous media by analytic continuuation. Commun. Math. Phys. 90 (1983) 473–491. | DOI | MR
and ,Spectral properties of periodic media in the large coupling limit. Commun. Partial Differ. Eq. 25 (2000) 1445–1470. | DOI | MR | Zbl
and ,Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58 (1987) 2486–2489. | DOI
,H. Kang, Layer potential approaches to interface problems. In Inverse Problems and Imaging: Panoramas et synthéses 44. Société Mathématique de France (2013). | MR
On the convergence of the perturbation method, 1. Progr. Theor. Phys. 4 (1949) 514–523. | DOI | MR
,On the convergence of the perturbation method, 2. Progr. Theor. Phys. 5 (1950) 95–101. | DOI | MR
,T. Kato, Perturbation Theory for Linear Operators. Springer, Berlin Heidelberg, Germany (1995).
Poincaré’s variational problem in potential theory. Arch. Ration. Mechan. Anal. 185 (2007) 143–184. | DOI | MR | Zbl
, and ,Electrostatic (plasmon) resonances in nanoparticles. Phys. Rev. B 72 (2005). | DOI
, and ,Bounds and exact theories for transport properties of inhomogeneous media. Appl. Phys. A. 26 (1981) 207–220. | DOI
and ,Bounds on the complex permittivity of a two-component composite material. J. Appl. Phys. 52 (1981) 5286–5293. | DOI
,G.W. Milton, The Theory of Composites. Cambridge University Press, Cambridge (2002). | MR | Zbl
S.P. Shipman, Power series for waves in micro-resonator arrays. In Proc. of the 13th International Conference on Mathematical Methods in Electrodynamic Theory (MMET10 Kyiv) (2010).
Perturbations des transformations autoadjoints dans léspace de hilbert. Comment. Math. Helv. 19 (1946) 347–366. | DOI | MR | Zbl
,Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 63 (1987) 2059–2062. | DOI
,On spectrum gaps of some divergent elliptic operators with periodic coefficients. St. Petersburg Math. J. 16 (2005) 773–790. | DOI | MR | Zbl
,Cité par Sources :