Bloch waves in crystals and periodic high contrast media
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 3, pp. 889-918.

Analytic representation formulas and power series are developed describing the band structure inside periodic photonic and acoustic crystals made from high contrast inclusions. Central to this approach is the identification and utilization of a resonance spectrum for quasi-periodic source free modes. These modes are used to represent solution operators associated with electromagnetic and acoustic waves inside periodic high contrast media. Convergent power series for the Bloch wave spectrum is recovered from the representation formulas. Explicit conditions on the contrast are found that provide lower bounds on the convergence radius. These conditions are sufficient for the separation of spectral branches of the dispersion relation.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016046
Classification : 35J15, 78A40, 78A45
Mots-clés : Bloch waves, band structure, high contrast, periodic medium
Lipton, Robert 1 ; Viator, Robert Jr. 1

1 Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, USA.
@article{M2AN_2017__51_3_889_0,
     author = {Lipton, Robert and Viator, Robert Jr.},
     title = {Bloch waves in crystals and periodic high contrast media},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {889--918},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {3},
     year = {2017},
     doi = {10.1051/m2an/2016046},
     mrnumber = {3666650},
     zbl = {1375.35109},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2016046/}
}
TY  - JOUR
AU  - Lipton, Robert
AU  - Viator, Robert Jr.
TI  - Bloch waves in crystals and periodic high contrast media
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 889
EP  - 918
VL  - 51
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2016046/
DO  - 10.1051/m2an/2016046
LA  - en
ID  - M2AN_2017__51_3_889_0
ER  - 
%0 Journal Article
%A Lipton, Robert
%A Viator, Robert Jr.
%T Bloch waves in crystals and periodic high contrast media
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 889-918
%V 51
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2016046/
%R 10.1051/m2an/2016046
%G en
%F M2AN_2017__51_3_889_0
Lipton, Robert; Viator, Robert Jr. Bloch waves in crystals and periodic high contrast media. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 3, pp. 889-918. doi : 10.1051/m2an/2016046. http://archive.numdam.org/articles/10.1051/m2an/2016046/

H. Ammari, H. Kang and H. Lee, Layer Potential Techniques in Spectral Analysis. American Mathematical Society, 201 Charles Street, Providence, RI (2009). | MR | Zbl

H. Ammari, H. Kang, S. Soussi and H. Zribi, Layer potential techniques in spectral analysis. Part 2: Sensitivity analysis of spectral properties of high contrast band-gap materials. Multiscale Model. Simul. 5 (2006) 646–663. | DOI | MR | Zbl

B.C. Aslan, W.W. Hager and S. Moskow, A generalized eigenproblem for the laplacian which arises in lightning. J. Math. Anal. Appl. 341 (2008) 1028–1041. | DOI | MR | Zbl

D.J. Bergman, The dielectric constant of a composite material - a problem in classical physics. Physics Reports 43 (1978) 377–407. | DOI | MR

D.J. Bergman, The dielectric constant of a simple cubic array of identical spheres. J. Phys. C. 12 (1979) 4947–4960. | DOI

O.P. Bruno, The effective conductivity of strongly heterogeneous composites. Proc. R. Soc. A 433 (1991) 353–381. | MR

Y. Chen and R. Lipton, Resonanace and double negative behavior in metamaterials. Arch. Ration. Mech. Anal. 209 (2013) 835–868. | DOI | MR | Zbl

M. Costabel, Boundary integral operators on lipschitz domains: Elementary results. SIAM J. Math. Anal. 19 (1988) 613–625. | DOI | MR | Zbl

D. Felbacq and G. Bouchitté, Negative refraction in periodic and random photonic crystals. New J. Phys. (2005) 7.

A. Figotin and P. Kuchment, Band-gap structure of the spectrum of periodic maxwell operators. J. Stat. Phys. 74 (1994) 447–455. | DOI | MR | Zbl

A. Figotin and P. Kuchment, Band-gap structure of spectra of periodic dielectric and acoustic media. 1. scalar model. SIAM J. Appl. Math. 56 (1996) 68–88. | DOI | MR | Zbl

A. Figotin and P. Kuchment, Spectral properties of classical waves in high-contrast periodic media. SIAM J. Appl. Math. 58 (1998) 683–702. | DOI | MR | Zbl

S.P. Fortes, R.P. Lipton and S.P. Shipman, Sub-wavelength plasmonic crystals: Dispersion relations and effective properties. Proc. R. Soc. London A. 486 (2010) 1993–2020. | MR | Zbl

S.P. Fortes, R.P. Lipton and S.P. Shipman, Convergent power series for fields in positive or negative high-contrast periodic media. Commun. Partial Differ. Eq. 36 (2011) 1016–1043. | DOI | MR | Zbl

K. Golden and G. Papanicolaou, Bounds for effective parameters of heterogeneous media by analytic continuuation. Commun. Math. Phys. 90 (1983) 473–491. | DOI | MR

R. Hempel and K. Lienau, Spectral properties of periodic media in the large coupling limit. Commun. Partial Differ. Eq. 25 (2000) 1445–1470. | DOI | MR | Zbl

S. John, Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58 (1987) 2486–2489. | DOI

H. Kang, Layer potential approaches to interface problems. In Inverse Problems and Imaging: Panoramas et synthéses 44. Société Mathématique de France (2013). | MR

T. Kato, On the convergence of the perturbation method, 1. Progr. Theor. Phys. 4 (1949) 514–523. | DOI | MR

T. Kato, On the convergence of the perturbation method, 2. Progr. Theor. Phys. 5 (1950) 95–101. | DOI | MR

T. Kato, Perturbation Theory for Linear Operators. Springer, Berlin Heidelberg, Germany (1995).

D. Khavinson, M. Putinar and H. Shapiro, Poincaré’s variational problem in potential theory. Arch. Ration. Mechan. Anal. 185 (2007) 143–184. | DOI | MR | Zbl

I. Mayergoyz, D. Fredkin and Z. Zhang, Electrostatic (plasmon) resonances in nanoparticles. Phys. Rev. B 72 (2005). | DOI

R.C. Mcphedran and G.W. Milton, Bounds and exact theories for transport properties of inhomogeneous media. Appl. Phys. A. 26 (1981) 207–220. | DOI

G.W. Milton, Bounds on the complex permittivity of a two-component composite material. J. Appl. Phys. 52 (1981) 5286–5293. | DOI

G.W. Milton, The Theory of Composites. Cambridge University Press, Cambridge (2002). | MR | Zbl

S.P. Shipman, Power series for waves in micro-resonator arrays. In Proc. of the 13th International Conference on Mathematical Methods in Electrodynamic Theory (MMET10 Kyiv) (2010).

B. Sz.-Nagy, Perturbations des transformations autoadjoints dans léspace de hilbert. Comment. Math. Helv. 19 (1946) 347–366. | DOI | MR | Zbl

E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 63 (1987) 2059–2062. | DOI

V.V. Zhikov, On spectrum gaps of some divergent elliptic operators with periodic coefficients. St. Petersburg Math. J. 16 (2005) 773–790. | DOI | MR | Zbl

Cité par Sources :