A generalized finite element method for linear thermoelasticity
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1145-1171.

We propose and analyze a generalized finite element method designed for linear quasistatic thermoelastic systems with spatial multiscale coefficients. The method is based on the local orthogonal decomposition technique introduced by Målqvist and Peterseim (Math. Comp. 83 (2014) 2583–2603). We prove convergence of optimal order, independent of the derivatives of the coefficients, in the spatial H 1 -norm. The theoretical results are confirmed by numerical examples.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016054
Classification : 65M60, 65M15, 74F05
Mots clés : Linear thermoelasticity, multiscale, generalized finite element, local orthogonal decomposition, a priori analysis
Målqvist, Axel 1 ; Persson, Anna 1

1 Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, 412 96 Göteborg, Sweden.
@article{M2AN_2017__51_4_1145_0,
     author = {M\r{a}lqvist, Axel and Persson, Anna},
     title = {A generalized finite element method for linear thermoelasticity},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1145--1171},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {4},
     year = {2017},
     doi = {10.1051/m2an/2016054},
     mrnumber = {3702408},
     zbl = {1397.74191},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2016054/}
}
TY  - JOUR
AU  - Målqvist, Axel
AU  - Persson, Anna
TI  - A generalized finite element method for linear thermoelasticity
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 1145
EP  - 1171
VL  - 51
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2016054/
DO  - 10.1051/m2an/2016054
LA  - en
ID  - M2AN_2017__51_4_1145_0
ER  - 
%0 Journal Article
%A Målqvist, Axel
%A Persson, Anna
%T A generalized finite element method for linear thermoelasticity
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 1145-1171
%V 51
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2016054/
%R 10.1051/m2an/2016054
%G en
%F M2AN_2017__51_4_1145_0
Målqvist, Axel; Persson, Anna. A generalized finite element method for linear thermoelasticity. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1145-1171. doi : 10.1051/m2an/2016054. http://archive.numdam.org/articles/10.1051/m2an/2016054/

A. Abdulle and P. Henning, Localized orthogonal decomposition method for the wave equation with a continuum of scales. Math. Comp. 86 (2017) 549–587. | DOI | MR | Zbl

K.T. Andrews, P. Shi, M. Shillor and S. Wright, Thermoelastic contact with Barber’s heat exchange condition. Appl. Math. Optim. 28 (1993) 11–48. | DOI | MR | Zbl

I. Babuška and R. Lipton, Optimal local approximation spaces for generalized finite element methods with application to multiscale problems. Multiscale Model. Simul. 9 (2011) 373–406. | DOI | MR | Zbl

I. Babuška and J.E. Osborn, Generalized finite element methods: their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20 (1983) 510–536. | DOI | MR | Zbl

M.A. Biot, General theory of three-dimensional consolidation. J. Appl. Phys. 18 (1941) 155–164. | DOI | JFM

M.A. Biot, Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27 (1956) 240–253. | DOI | MR | Zbl

S.C. Brenner and R.L. Scott, The mathematical theory of finite element methods. Vol. 15 of Texts in Applied Mathematics, 3rd edn. Springer, New York (2008). | MR | Zbl

P.G. Ciarlet, Mathematical elasticity. Vol. I. Three-dimensional elasticity. Vol. 20 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam (1988). | MR | Zbl

C.M. Dafermos, On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity. Arch. Ration. Mech. Anal. 29 (1968) 241–271. | DOI | MR | Zbl

Ch. Engwer, P. Henning, A. Målqvist and D. Peterseim, Efficient implementation of the localized orthogonal decomposition method. Preprint (2016). | arXiv | MR

A. Ern and S. Meunier, A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems. ESAIM: M2AN 43 (2009) 353–375. | DOI | Numdam | MR | Zbl

P. Henning and A. Målqvist, Localized orthogonal decomposition techniques for boundary value problems. SIAM J. Sci. Comput. 36 (2014) A1609–A1634. | DOI | MR | Zbl

P. Henning, A. Målqvist and D. Peterseim, A localized orthogonal decomposition method for semi-linear elliptic problems. ESAIM: M2AN 48 (2014) 1331–1349. | DOI | Numdam | MR | Zbl

P. Henning and A. Persson, A multiscale method for linear elasticity reducing Poisson locking. Comput. Methods Appl. Mech. Engrg. 310 (2016) 156–171. | DOI | MR | Zbl

T.J.R. Hughes, G.R. Feijóo, L. Mazzei and J.-B. Quincy. The variational multiscale method – a paradigm for computational mechanics. Comput. Methods Appl. Mech. Engrg. 166 (1998) 3–24. | DOI | MR | Zbl

M.G. Larson and A. Målqvist, Adaptive variational multiscale methods based on a posteriori error estimation: energy norm estimates for elliptic problems. Comput. Methods Appl. Mech. Engrg. 196 (2007) 2313–2324. | DOI | MR | Zbl

A. Målqvist and A. Persson, Multiscale techniques for parabolic equations. Preprint (2015). | arXiv | MR

A. Målqvist and D. Peterseim, Localization of elliptic multiscale problems. Math. Comp. 83 (2014) 2583–2603. | DOI | MR | Zbl

A. Målqvist and D. Peterseim, Computation of eigenvalues by numerical upscaling. Numer. Math. 130 (2015) 337–361. | DOI | MR | Zbl

D. Peterseim, Variational multiscale stabilization and the exponential decay of fine-scale correctors. In vol. 114 of Lect. Notes Comput. Sci. Engrg. Springer (2016) 343–369. | MR

P.J. Phillips and M.F. Wheeler, Overcoming the problem of locking in linear elasticity and poroelasticity: an heuristic approach. Comput. Geosci. 13 (2009) 5–12. | DOI | Zbl

P.J. Phillips and M.F. Wheeler, A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity. Comput. Geosci. 12 (2008) 417–435. | DOI | MR | Zbl

P. Shi and M. Shillor, Existence of a solution to the N-dimensional problem of thermoelastic contact. Commun. Partial Differ. Eq. 17 (1992) 1597–1618. | DOI | MR | Zbl

R.E. Showalter, Diffusion in poro-elastic media. J. Math. Anal. Appl. 251 (2000) 310–340. | DOI | MR | Zbl

X. Xu, The N-dimensional quasistatic problem of thermoelastic contact with Barber’s heat exchange conditions. Adv. Math. Sci. Appl. 6 (1996) 559–587. | MR | Zbl

A. Ženíšek, The existence and uniqueness theorem in Biot’s consolidation theory. Apl. Mat. 29 (1984) 194–211. | MR | Zbl

A. Ženíšek, Finite element methods for coupled thermoelasticity and coupled consolidation of clay. RAIRO Anal. Numér. 18 (1984) 183–205. | DOI | Numdam | MR | Zbl

Cité par Sources :