New transmission condition accounting for diffusion anisotropy in thin layers applied to diffusion MRI
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1279-1301.

The Bloch-Torrey Partial Differential Equation (PDE) can be used to model the diffusion Magnetic Resonance Imaging (dMRI) signal in biological tissue. In this paper, we derive an Anisotropic Diffusion Transmission Condition (ADTC) for the Bloch-Torrey PDE that accounts for anisotropic diffusion inside thin layers. Such diffusion occurs, for example, in the myelin sheath surrounding the axons of neurons. This ADTC can be interpreted as an asymptotic model of order two with respect to the layer thickness and accounts for water diffusion in the normal direction that is low compared to the tangential direction. We prove uniform stability of the asymptotic model with respect to the layer thickness and a mass conservation property. We also prove the theoretical quadratic accuracy of the ADTC. Finally, numerical tests validate these results and show that our model gives a better approximation of the dMRI signal than a simple transmission condition that assumes isotropic diffusion in the layers.

DOI : 10.1051/m2an/2016060
Classification : 35C20, 35Q92
Mots-clés : Asymptotic expansion, Bloch-Torrey equation, anisotropic diffusion transmission condition, diffusion magnetic resonance imaging
Caubet, Fabien 1 ; Haddar, Houssem 2 ; li, Jing-Rebecca 2 ; Nguyen, Van Dang 2

1 Institut de Mathématiques de Toulouse, Université de Toulouse, 31062 Toulouse cedex 9, France.
2 INRIA Saclay, Équipe DéFI, CMAP, École Polytechnique, Route de Saclay, 91128 Palaiseau, France.
@article{M2AN_2017__51_4_1279_0,
     author = {Caubet, Fabien and Haddar, Houssem and li, Jing-Rebecca and Nguyen, Van Dang},
     title = {New transmission condition accounting for diffusion anisotropy in thin layers applied to diffusion {MRI}},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1279--1301},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {4},
     year = {2017},
     doi = {10.1051/m2an/2016060},
     mrnumber = {3702413},
     zbl = {1378.35309},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2016060/}
}
TY  - JOUR
AU  - Caubet, Fabien
AU  - Haddar, Houssem
AU  - li, Jing-Rebecca
AU  - Nguyen, Van Dang
TI  - New transmission condition accounting for diffusion anisotropy in thin layers applied to diffusion MRI
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 1279
EP  - 1301
VL  - 51
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2016060/
DO  - 10.1051/m2an/2016060
LA  - en
ID  - M2AN_2017__51_4_1279_0
ER  - 
%0 Journal Article
%A Caubet, Fabien
%A Haddar, Houssem
%A li, Jing-Rebecca
%A Nguyen, Van Dang
%T New transmission condition accounting for diffusion anisotropy in thin layers applied to diffusion MRI
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 1279-1301
%V 51
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2016060/
%R 10.1051/m2an/2016060
%G en
%F M2AN_2017__51_4_1279_0
Caubet, Fabien; Haddar, Houssem; li, Jing-Rebecca; Nguyen, Van Dang. New transmission condition accounting for diffusion anisotropy in thin layers applied to diffusion MRI. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1279-1301. doi : 10.1051/m2an/2016060. http://archive.numdam.org/articles/10.1051/m2an/2016060/

Y. Achdou, O. Pironneau and F. Valentin, Effective boundary conditions for laminar flows over periodic rough boundaries. J. Comput. Phys. 147 (1998) 187–218. | DOI | MR | Zbl

B. Aslanyürek, H. Haddar and H.Şahintürk, Generalized impedance boundary conditions for thin dielectric coatings with variable thickness. Wave Motion 48 (2011) 681–700. | DOI | MR | Zbl

Y. Assaf, R.Z. Freidlin, G.K. Rohde and P.J. Basser, New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn. Reson. Med. 52 (2004) 965–978. | DOI

W.Y. Aung, S. Mar and T.L. Benzinger, Diffusion tensor MRI as a biomarker in axonal and myelin damage. Imaging Med. 5 (2013) 427–440. | DOI

C. Beaulieu, The basis of anisotropic water diffusion in the nervous system – a technical review. NMR Biomed. 15 (2002) 435–455. | DOI

A. Bendali and K. Lemrabet, The effect of a thin coating on the scattering of a time-harmonic wave for the Helmholtz equation. SIAM J. Appl. Math. 56 (1996) 1664–1693. | DOI | MR | Zbl

I.E. Biton, I.D. Duncan and Y. Cohen, High b-value q-space diffusion MRI in myelin-deficient rat spinal cords. Magn. Reson. Imaging 24 (2006) 161–166. | DOI

S. Chun, H. Haddar and J.S. Hesthaven, High-order accurate thin layer approximations for time-domain electromagnetics, Part II: transmission layers. J. Comput. Appl. Math. 234 (2010) 2587–2608. | DOI | MR | Zbl

J. Coatléven, H. Haddar and J. Li, A macroscopic model including membrane exchange for diffusion MRI. SIAM J. Appl. Math. 74 (2014) 516–546. | DOI | MR | Zbl

B. Delourme, H. Haddar and P. Joly, Approximate models for wave propagation across thin periodic interfaces. J. Math. Pures Appl. 98 (2012) 28–71. | DOI | MR | Zbl

M. Duruflé, V. Péron and C. Poignard, Thin Layer Models for Electromagnetism. Commun. Comput. Phys. 16 (2014) 213–238. | DOI

J. Farrell, Q-space Diffusion Imaging of Axon and Myelin Damage in the Human and Rat Spinal Cord. Johns Hopkins University (2009).

R. Fox, T. Cronin, J. Lin, X. Wang, K. Sakaie, D. Ontaneda, S. Mahmoud, M. Lowe and M. Phillips, Measuring myelin repair and axonal loss with diffusion tensor imaging. Am. J. Neuroradiology 32 (2011) 85–91. | DOI

H. Haddar and P. Joly, Effective boundary conditions for thin ferromagnetic coatings. Asymptotic analysis of the 1D model. Asymptot. Anal. 2 (2001) 127–160. | MR | Zbl

H. Haddar and P. Joly, Stability of thin layer approximation of electromagnetic waves scattering by linear and nonlinear coatings. J. Comput. Appl. Math. 143 (2002) 201–236. | DOI | MR | Zbl

H. Haddar, P. Joly and H.-M. Nguyen, Generalized impedance boundary conditions for scattering by strongly absorbing obstacles: the scalar case. Math. Models Methods Appl. Sci. 15 (2005) 1273–1300. | DOI | MR | Zbl

H. Haddar, P. Joly and H.-M. Nguyen, Generalized impedance boundary conditions for scattering problems from strongly absorbing obstacles: The case of Maxwell’s equations. Math. Models Methods Appl. Sci. 18 (2008) 1787–1827. | DOI | MR | Zbl

M.A. Horsfield and D.K. Jones, Applications of diffusion-weighted and diffusion tensor MRI to white matter diseases, a review. NMR Biomed. 15 (2002) 570–577. | DOI

W. Jäger and A. Mikelić, On the roughness-induced effective boundary conditions for an incompressible viscous flow. J. Differ. Equ. 170 (2001) 96–122. | DOI | MR | Zbl

H. Johansen-Berg and T. Behrens, Diffusion MRI: From quantitative measurement to in vivo neuroanatomy. Elsevier Science (2013).

D. Jones, Diffusion MRI: theory, methods, and applications. Oxford University Press, USA (2010).

L.J. Lanyon, Neuroimaging – Methods, in: Diffusion tensor imaging: structural connectivity insights, limitations and future directions. Edited by Peter Bright. InTech (2012).

D. Le Bihan and H. Johansen-Berg, Diffusion MRI at 25: Exploring brain tissue structure and function. NeuroImage 61 (2012) 324–34. | DOI

D. Lebihan, The wet mind: water and functional neuroimaging. Phys. Med. Biol. 52 (2007).

J.-L. Lions, Quelques remarques sur les équations différentielles opérationnelles du 1 er ordre. Rend. Sem. Mat. Univ. Padova 33 (1963) 213–225. | Numdam | MR | Zbl

J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, Vol. I. Translated from the French by P. Kenneth. Die Grundl. Math. Wiss., Band 181. Springer-Verlag, New York-Heidelberg (1972). | MR | Zbl

S.E. Maier, Y. Sun and R.V. Mulkern, Diffusion imaging of brain tumors. NMR Biomed. 23 (2010) 849–864. | DOI

D.V. Nguyen, J.-R. Li, D. Grebenkov and D.L. Bihan, A finite elements method to solve the Bloch-Torrey equation applied to diffusion magnetic resonance imaging. J. Comput. Phys. 263 (2014) 283–302. | DOI | MR | Zbl

R. Perrussel and C. Poignard, Asymptotic expansion of steady- state potential in a high contrast medium with a thin resistive layer. Appl. Math. Comput. 221 (2013) 48–65. | MR | Zbl

C. Poignard, Generalized impedance boundary condition at high frequency for a domain with thin layer: the circular case. Appl. Anal. 86 (2007) 1549–1568. | DOI | MR | Zbl

R. Quarles, W. Macklin and P. Morell, Basic neurochemistry: molecular, cellular and medical aspects. In: Myelin formation, structure and biochemistry. Elsevier Science (2006).

H. Si, TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. Art. 4 (2015) 11, 36. | MR | Zbl

B.P. Sommeijer, L.F. Shampin and J.G. Verwer, RKC: an explicit solver for parabolic PDEs. J. Comput. Appl. Math. 88 (1998) 315–326. | DOI | MR | Zbl

E.O. Stejskal and J.E. Tanner, Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42 (1965) 288–292. | DOI

H. Torrey, Bloch equations with diffusion terms. Phys. Rev. Online Archive (Prola) 104 (1956) 563–565.

J.G. Verwer, W.H. Hundsdorfer and B.P. Sommeijer, Convergence properties of the Runge−Kutta−Chebyshev method. Numer. Math. 57 (1990) 157–178. | DOI | MR | Zbl

Cité par Sources :