This paper introduces a quasi-interpolation operator for scalar- and vector-valued finite element spaces constructed on affine, shape-regular meshes with some continuity across mesh interfaces. This operator gives optimal estimates of the best approximation error in any -norm assuming regularity in the fractional Sobolev spaces , where and the smoothness index can be arbitrarily close to zero. The operator is stable in , leaves the corresponding finite element space point-wise invariant, and can be modified to handle homogeneous boundary conditions. The theory is illustrated on -, - and -conforming spaces.
Accepté le :
DOI : 10.1051/m2an/2016066
Mots clés : Quasi-interpolation, finite elements, best approximation
@article{M2AN_2017__51_4_1367_0, author = {Ern, Alexandre and Guermond, Jean-Luc}, title = {Finite element quasi-interpolation and best approximation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1367--1385}, publisher = {EDP-Sciences}, volume = {51}, number = {4}, year = {2017}, doi = {10.1051/m2an/2016066}, mrnumber = {3702417}, zbl = {1378.65041}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2016066/} }
TY - JOUR AU - Ern, Alexandre AU - Guermond, Jean-Luc TI - Finite element quasi-interpolation and best approximation JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 1367 EP - 1385 VL - 51 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2016066/ DO - 10.1051/m2an/2016066 LA - en ID - M2AN_2017__51_4_1367_0 ER -
%0 Journal Article %A Ern, Alexandre %A Guermond, Jean-Luc %T Finite element quasi-interpolation and best approximation %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 1367-1385 %V 51 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2016066/ %R 10.1051/m2an/2016066 %G en %F M2AN_2017__51_4_1367_0
Ern, Alexandre; Guermond, Jean-Luc. Finite element quasi-interpolation and best approximation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1367-1385. doi : 10.1051/m2an/2016066. http://archive.numdam.org/articles/10.1051/m2an/2016066/
A priori and a posteriori analysis of finite volume discretizations of Darcy’s equations. Numer. Math. 96 (2003) 17–42. | DOI | MR | Zbl
, and ,Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15 (2006) 1–155. | DOI | MR | Zbl
, and ,A local regularization operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35 (1998) 1893–1916. | DOI | MR | Zbl
and ,Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation. SIAM J. Numer. Anal. 7 (1970) 112–124. | DOI | MR | Zbl
and ,Continuous interior penalty -finite element methods for advection and advection-diffusion equations. Math. Comput. 76 (2007) 1119–1140. | DOI | MR | Zbl
and ,Gauss-compatible Galerkin schemes for time-dependent Maxwell equations. Math. Comput. 302 (2016) 2651–2685. | DOI | MR | Zbl
and ,Analysis of the Scott-Zhang interpolation in the fractional order Sobolev spaces. J. Numer. Math. 21 (2013) 173–180. | MR | Zbl
,P.G. Ciarlet, The finite element method for elliptic problems, Vol. 40 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM). Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)]. Philadelphia, PA (2002). | MR | Zbl
Approximation by finite element functions using local regularization. RAIRO: Anal. Numer. 9 (1975) 77–84. | Numdam | MR | Zbl
,A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations. J. Sci. Comput. 31 (2007) 61–73. | DOI | MR | Zbl
, and ,D. Di Pietro and A. Ern, Mathematical aspects of discontinuous Galerkin methods. Vol. 69 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Heidelberg (2012). | MR | Zbl
Polynomial approximation of functions in Sobolev spaces. Math. Comput. 34 (1980) 441–463. | DOI | MR | Zbl
and ,A. Ern and J.-L. Guermond, Theory and practice of finite elements. Vol. 159 of Appl. Math. Sci. Springer-Verlag, New York (2004). | MR | Zbl
Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems. J. Comput. Appl. Math. 234 (2010) 114–130. | DOI | MR | Zbl
, and ,Two-grid finite-element schemes for the transient Navier-Stokes problem. ESAIM: M2AN 35 (2001) 945–980. | DOI | Numdam | MR | Zbl
and ,P. Grisvard, Elliptic problems in nonsmooth domains. Vol. 24 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston, MA (1985). | MR | Zbl
On the equivalence of fractional-order Sobolev semi-norms. J. Math. Anal. Appl. 417 (2014) 505–518. | DOI | MR | Zbl
,A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41 (2003) 2374–2399. | DOI | MR | Zbl
and ,C.B. Morrey, Jr, Mettre en romain : Multiple integrals in the calculus of variations. Die Grundlehren der Mathematischen Wissenschaften, Band 130. Springer-Verlag New York, Inc., New York (1966). | MR | Zbl
On a BPX-preconditioner for elements. Computing 51 (1993) 125–133. | DOI | MR | Zbl
,The continuity of functions with -th derivative measure. Houston J. Math. 33 (2007) 927–939. | MR | Zbl
and ,J. Schöberl and C. Lehrenfeld, Domain decomposition preconditioning for high order hybrid discontinuous Galerkin methods on tetrahedral meshes. In Advanced finite element methods and applications. Vol. 66 of Lect. Notes Appl. Comput. Mech. Springer, Heidelberg (2013) 27–56. | MR | Zbl
Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. | DOI | MR | Zbl
and ,L. Tartar, An introduction to Sobolev spaces and interpolation spaces. Vol. 3 of Lecture Notes of the Unione Matematica Italiana. Springer, Berlin; UMI, Bologna (2007). | MR | Zbl
Cité par Sources :