The Trefftz Discontinuous Galerkin (TDG) method is a technique for approximating the Helmholtz equation (or other linear wave equations) using piecewise defined local solutions of the equation to approximate the global solution. When coefficients in the equation (for example, the refractive index) are piecewise constant it is common to use plane waves on each element. However when the coefficients are smooth functions of position, plane waves are no longer directly applicable. In this paper we show how Generalized Plane Waves (GPWs) can be used in a modified TDG scheme to approximate the solution for piecewise smooth coefficients in two dimensions. GPWs are approximate solutions to the equation that reduce to plane waves when the medium through which the wave propagates is constant. We shall show how to modify the TDG sesquilinear form to allow us to prove convergence of the GPW based version. The new scheme retains the high order convergence of the original TDG scheme (when the solution is smooth) and also retains the same number of degrees of freedom per element (corresponding to the directions of the GPWs). Unfortunately it looses the advantage that only skeleton integrals need to be performed. Besides proving convergence, we provide numerical examples to test our theory.
Accepté le :
DOI : 10.1051/m2an/2016067
Mots-clés : Trefftz based method, generalized plane waves, order of convergence
@article{M2AN_2017__51_4_1387_0, author = {Imbert-G\'erard, Lise-Marie and Monk, Peter}, title = {Numerical simulation of wave propagation in inhomogeneous media using {Generalized} {Plane} {Waves}}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1387--1406}, publisher = {EDP-Sciences}, volume = {51}, number = {4}, year = {2017}, doi = {10.1051/m2an/2016067}, mrnumber = {3702418}, zbl = {1378.65179}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2016067/} }
TY - JOUR AU - Imbert-Gérard, Lise-Marie AU - Monk, Peter TI - Numerical simulation of wave propagation in inhomogeneous media using Generalized Plane Waves JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 1387 EP - 1406 VL - 51 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2016067/ DO - 10.1051/m2an/2016067 LA - en ID - M2AN_2017__51_4_1387_0 ER -
%0 Journal Article %A Imbert-Gérard, Lise-Marie %A Monk, Peter %T Numerical simulation of wave propagation in inhomogeneous media using Generalized Plane Waves %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 1387-1406 %V 51 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2016067/ %R 10.1051/m2an/2016067 %G en %F M2AN_2017__51_4_1387_0
Imbert-Gérard, Lise-Marie; Monk, Peter. Numerical simulation of wave propagation in inhomogeneous media using Generalized Plane Waves. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1387-1406. doi : 10.1051/m2an/2016067. http://archive.numdam.org/articles/10.1051/m2an/2016067/
M. Bandres, Weber functions (parabolic cylinder functions). Available at http://www.mathworks.com/matlabcentral/fileexchange/46131-weber-functions–parabolic-cylinder-functions (2015).
Parabolic nondiffracting optical fields. Opt. Lett. 29 (2004) 44–46. | DOI
, and ,Error estimates for the Ultra Weak Variational Formulation of the Helmholtz equation. ESAIM: M2AN 42 (2008) 925–40. | DOI | Numdam | MR | Zbl
and ,O. Cessenat, Application d’une nouvelle formulation variationnelle aux équations d’ondes harmoniques. Problèmes de Helmholtz 2D et de Maxwell 3D. Ph.D. thesis, Université Paris IX Dauphine (1996).
Application of the ultra-weak variational formulation of elliptic PDEs to the 2-dimensional Helmholtz problem. SIAM J. Numer. Anal. 35 (1998) 255–99. | DOI | MR | Zbl
and ,S. Esterhazy and J. Melenk, Numerical Analysis of Multiscale Problems, edited by I. Graham, T. Hou, O. Lakkis and R. Scheichl. Vol. 83 of Lect. Notes Comput. Sci. Eng. Springer (2012) 285–324. | MR | Zbl
Plane wave discontinuous Galerkin methods: analysis of the -version. ESAIM: M2AN 43 (2009) 297–331. | DOI | Numdam | MR | Zbl
, and ,Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the -version. SIAM J. Numer. Anal. 49 (2011) 264–84. | DOI | MR | Zbl
, and ,Trefftz discontinuous Galerkin methods for acoustic scattering on locally refined meshes. Appl. Numer. Math. 79 (2014) 79–91. | DOI | MR | Zbl
, and ,Plane wave discontinuous Galerkin methods: Exponential convergence of the -version, Found. Comput. Math. 16 (2015) 637–675. | DOI | MR | Zbl
, and ,Computational aspects of the Ultra Weak Variational Formulation. J. Comput. Phys. 182 (2002) 27–46. | DOI | MR | Zbl
, and ,L. Imbert-Gérard, Mathematical and numerical problems of some wave phenomena appearing in magnetic plasmas. Ph.D. thesis, Université Pierre et Marie Curie - Paris VI (2013).
Interpolation properties of generalized plane waves. Numer. Math. 131 (2015) 683–711. | DOI | MR | Zbl
,A generalized plane-wave numerical method for smooth nonconstant coefficients. IMA J. Numer. Anal. 34 (2014) 1072–1103. | DOI | MR | Zbl
and ,Residual-based adaptivity and PWDG methods for the Helmholtz equation. SIAM J. Sci. Comput. 37 (2015) A1525–A1553. | DOI | MR | Zbl
, and ,Improvements for the ultra weak variational formulation. Int. J. Numer. Meth. Eng. 94 (2013), 598–624. | DOI | Zbl
, and ,Cité par Sources :