A novel nonlocal potential solver based on nonuniform FFT for efficient simulation of the Davey−Stewartson equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1527-1538.

We propose an efficient and accurate solver for the nonlocal potential in the Davey−Stewartson equations using nonuniform FFT (NUFFT). A discontinuity in the Fourier transform of the nonlocal potential causes “accuracy locking” if the potential is solved by standard FFT with periodic boundary conditions on a truncated domain. Using the fact that the discontinuity disappears in polar coordinates, we reformulate the potential integral and split it into high and low frequency parts. The high frequency part can be approximated by the standard FFT method, while the low frequency part is evaluated with a high order Gauss quadrature accelerated by nonuniform FFT. The NUFFT solver has O(NlogN) complexity, where N is the total number of discretization points, and achieves higher accuracy than standard FFT solver, which makes its use in simulations very attractive. Extensive numerical results show the efficiency and accuracy of the proposed new method.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016071
Classification : 35Q55, 65M70, 65T50, 76B45
Mots-clés : Nonlocal potential solver, nonuniform FFT, Davey–Stewartson equations
Mauser, Norbert J. 1, 2 ; Stimming, Hans Peter 1, 3, 2 ; Zhang, Yong 2, 4

1 Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria.
2 Wolfgang Pauli Institute, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria.
3 ATI, Vienna University of Technology, Stadionallee 2, 1020 Vienna, Austria.
4 Université de Rennes 1, IRMAR, Campus de Beaulieu, 35042 Rennes Cedex, France.
@article{M2AN_2017__51_4_1527_0,
     author = {Mauser, Norbert J. and Stimming, Hans Peter and Zhang, Yong},
     title = {A novel nonlocal potential solver based on nonuniform {FFT} for efficient simulation of the {Davey\ensuremath{-}Stewartson} equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1527--1538},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {4},
     year = {2017},
     doi = {10.1051/m2an/2016071},
     mrnumber = {3702423},
     zbl = {1375.35387},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2016071/}
}
TY  - JOUR
AU  - Mauser, Norbert J.
AU  - Stimming, Hans Peter
AU  - Zhang, Yong
TI  - A novel nonlocal potential solver based on nonuniform FFT for efficient simulation of the Davey−Stewartson equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 1527
EP  - 1538
VL  - 51
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2016071/
DO  - 10.1051/m2an/2016071
LA  - en
ID  - M2AN_2017__51_4_1527_0
ER  - 
%0 Journal Article
%A Mauser, Norbert J.
%A Stimming, Hans Peter
%A Zhang, Yong
%T A novel nonlocal potential solver based on nonuniform FFT for efficient simulation of the Davey−Stewartson equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 1527-1538
%V 51
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2016071/
%R 10.1051/m2an/2016071
%G en
%F M2AN_2017__51_4_1527_0
Mauser, Norbert J.; Stimming, Hans Peter; Zhang, Yong. A novel nonlocal potential solver based on nonuniform FFT for efficient simulation of the Davey−Stewartson equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1527-1538. doi : 10.1051/m2an/2016071. http://archive.numdam.org/articles/10.1051/m2an/2016071/

M. Ablowitz and R. Haberman, Nonlinear evolution equations in two and three dimensions. Phys. Rev. Lett. 35 (1975) 1185–1188. | DOI | MR

M.J. Ablowitz and H. Segur, Solitons and the inverse scattering transform. Studies in Applied and Numerical Mathematics. SIAM, Philadelphia (1981). | MR | Zbl

X. Antoine, A. Arnold, C. Besse, M. Ehrhardt and A. Schädle, A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations. Commun. Comput. Phys. 4 (2008) 729–796. | MR | Zbl

X. Antoine, W. Bao and C. Besse, Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations. Comput. Phys. Commun. 184 (2013) 2621–2633. | DOI | MR | Zbl

X. Antoine, C. Besse and P. Klein, Numerical solution of time-dependent nonlinear Schrödinger equation using domain truncation techniques coupled with relaxation scheme. Laser Phys. 21 (2011) 1491–1502. | DOI

V.A. Arkadiev, A.K. Pogrebkov and M.C. Polivanov, Inverse scattering transform method and soliton solutions for the Davey−Stewartson II equation. Physica D 36 (1989) 189–196. | DOI | MR | Zbl

W. Bao, S. Jiang, Q. Tang and Y. Zhang, Computing the ground state and dynamics of the nonlinear Schrödinger equation with nonlocal interactions via the nonuniform FFT. J. Comput. Phys. 296 (2015) 72–89. | DOI | MR | Zbl

W. Bao, S. Jin and P.A. Markowich, Time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J. Comput. Phys. 175 (2002) 487–524. | DOI | MR | Zbl

W. Bao, S. Jin and P.A. Markowich, Numerical studies of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regime. SIAM J. Sci. Comput. 25 (2003) 27–64. | DOI | MR | Zbl

W. Bao, N.J. Mauser and H.P. Stimming, Effective one particle quantum dynamics of electrons: A numerical study of the Schrödinger-Poisson-Xα model. Commun. Math. Sci. 1 (2003) 809–831. | DOI | MR | Zbl

W. Bao, Q. Tang and Y. Zhang, Accurate and efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates via the nonuniform FFT. Commun. Comput. Phys. 19 (2016) 1141–1166. | DOI | MR | Zbl

C. Besse, N.J. Mauser and H.P. Stimming, Numerical Study of the Davey−Stewartson System. ESAIM: M2AN 38 (2004) 1035–1054. | DOI | Numdam | MR | Zbl

V.D. Djordjević and L.G. Redekopp, On two-dimensional packets of capillary-gravity waves. J. Fluid Mech. 79 (1977) 703–714. | DOI | MR | Zbl

A. Dutt and V. Rokhlin, Fast Fourier transforms for nonequispaced data. SIAM J. Sci. Comput. 14 (1993) 1368–1393. | DOI | MR | Zbl

J.M. Ghidaglia and J.C. Saut, On the initial value problem for the Davey−Stewartson systems. Nonlinearity 3 (1990) 475–506. | DOI | MR | Zbl

L. Greengard and J.Y. Lee, Accelerating the nonuniform fast Fourier transform. SIAM Rev. 46 (2004) 443–454. | DOI | MR | Zbl

S. Jiang, L. Greengard and W. Bao, Fast and accurate evaluation of nonlocal Coulomb and dipole-dipole interactions via the nonuniform FFT. SIAM J. Sci. Comput. 36 (2014) B777–B794. | DOI | MR | Zbl

C. Klein, B. Muite and K. Roidot, Numerical study of blowup in the Davey−Stewartson system. Discrete Contin. Dyn. Syst. – Ser. B 5 (2013) 1361–1387. | MR | Zbl

C. Klein and K. Roidot, Fourth order time-stepping for Kadomtsev-Petviashvili and Davey−Stewartson equations. SIAM J. Sci. Comput. 33 (2011) 3333–3356. | DOI | MR | Zbl

Y. Ohta and J.K. Yang, Dynamics of rogue waves in the Davey−Stewartson II equation. J. Phys. A 46 (2013) 105–202. | DOI | MR | Zbl

A. Scrinzi, H.P. Stimming and N.J. Mauser, On the non-equivalence of perfectly matched layers and exterior complex scaling. J. Comput. Phys. 269 (2014) 98–107. | DOI | MR | Zbl

Z. Xu, H. Han and X. Wu, Adaptive absorbing boundary conditions for Schrödinger-type equations: Application to nonlinear and multi-dimensional problems. J. Comput. Phys. 225 (2007) 1577–1589. | DOI | MR | Zbl

H. Yoshida, Construction of higher order symplectic integrators. Phys. Lett. A. 150 (1990) 262–268. | DOI | MR

Y. Zhang and X. Dong, On the computation of ground state and dynamics of Schrödinger-Poisson-Slater system. J. Comput. Phys. 230 (2011) 2660–2676. | DOI | MR | Zbl

Cité par Sources :