An Adaptive Parametrized-Background Data-Weak approach to variational data assimilation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 5, pp. 1827-1858.

We present an Adaptive Parametrized-Background Data-Weak (APBDW) approach to the steady-state variational data assimilation (state estimation) problem for systems modeled by partial differential equations. The variational formulation is based on the Tikhonov regularization of the PBDW formulation [Y. Maday, A.T. Patera, J.D. Penn and M. Yano, Int. J. Numer. Meth. Eng. 102 (2015) 933–965] for pointwise noisy measurements. We propose an adaptive procedure based on a posteriori estimates of the L 2 state-estimation error to improve performance. We also present a priori estimates for the L 2 state-estimation error that motivate the approach and guide the adaptive procedure. We provide numerical experiments for a synthetic acoustic problem to illustrate the different elements of the methodology, and we consider an experimental thermal patch configuration to demonstrate the applicability of our approach to real physical systems.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017005
Classification : 62-07, 93E24
Mots-clés : Variational data assimilation, parametrized partial differential equations, model order reduction, kernel methods
Taddei, Tommaso 1

1 Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
@article{M2AN_2017__51_5_1827_0,
     author = {Taddei, Tommaso},
     title = {An {Adaptive} {Parametrized-Background} {Data-Weak} approach to variational data assimilation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1827--1858},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {5},
     year = {2017},
     doi = {10.1051/m2an/2017005},
     zbl = {1392.62125},
     mrnumber = {3731551},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2017005/}
}
TY  - JOUR
AU  - Taddei, Tommaso
TI  - An Adaptive Parametrized-Background Data-Weak approach to variational data assimilation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 1827
EP  - 1858
VL  - 51
IS  - 5
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2017005/
DO  - 10.1051/m2an/2017005
LA  - en
ID  - M2AN_2017__51_5_1827_0
ER  - 
%0 Journal Article
%A Taddei, Tommaso
%T An Adaptive Parametrized-Background Data-Weak approach to variational data assimilation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 1827-1858
%V 51
%N 5
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2017005/
%R 10.1051/m2an/2017005
%G en
%F M2AN_2017__51_5_1827_0
Taddei, Tommaso. An Adaptive Parametrized-Background Data-Weak approach to variational data assimilation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 5, pp. 1827-1858. doi : 10.1051/m2an/2017005. http://archive.numdam.org/articles/10.1051/m2an/2017005/

N. Aronszajn, Theory of reproducing kernels. Trans. Amer. Math. Soc. 68 (1950) 337–404. | DOI | MR | Zbl

A. Bennett, Array design by inverse methods. Progr. Oceanogr. 15 (1985) 129–156. | DOI

A. Bennett and P. Mcintosh, Open ocean modeling as an inverse problem: tidal theory. J. Phys. Oceanogr. 12 (1982) 1004–1018. | DOI

A.F. Bennett, Inverse modeling of the ocean and atmosphere. Cambridge University Press (2002). | MR | Zbl

M. Benzi, G.H. Golub and J. Liesen, Numerical solution of saddle point problems. Acta Numer. 14 (2005) 1–137. | DOI | MR | Zbl

G. Berkooz, P. Holmes and J.L. Lumley, The proper orthogonal decomposition in the analysis of turbulent flows. Ann. Rev. Fluid Mech. 25 (1993) 539–575. | DOI | MR

P. Binev, A. Cohen, W. Dahmen, R. Devore, G. Petrova and P. Wojtaszczyk, Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43 (2011) 1457–1472. | DOI | MR | Zbl

A. Buffa, Y. Maday, A.T. Patera, C. Prud homme and G. Turinici, A prioriconvergence of the greedy algorithm for the parametrized reduced basis method. ESAIM: M2AN 46 (2012) 595–603. | Numdam | MR | Zbl

Y. Cao, J. Zhu, I. M. Navon and Z. Luo, A reduced-order approach to four-dimensional variational data assimilation using proper orthogonal decomposition. Inter. J. Numer. Methods Fluids 53 (2007) 1571–1583. | DOI | Zbl

G. Chardon, A. Cohen and L. Daudet, Sampling and reconstruction of solutions to the helmholtz equation. Preprint (2013). | arXiv | MR

F. Chinesta and E. Cueto, PGD-based modeling of materials, structures and processes. Springer (2014).

F. Chinesta, P. Ladeveze and E. Cueto, A short review on model order reduction based on proper generalized decomposition. Arch. Comput. Methods Eng. 18 (2011) 395–404. | DOI

A. Cohen and R. Devore, Approximation of high-dimensional parametric pdes. Acta Numer. 24 (2015) 1–159. | DOI | MR | Zbl

P. Courtier, J.-N. Thépaut and A. Hollingsworth, A strategy for operational implementation of 4d-var, using an incremental approach. Quarterly J. Royal Meteor. Soc. 120 (1994) 1367–1387. | DOI

R. Devore, G. Petrova and P. Wojtaszczyk, Greedy algorithms for reduced bases in banach spaces. Constr. Approx. 37 (2013) 455–466. | DOI | MR | Zbl

L. Evans, Partial Differential Equations. Graduate studies in Mathematics. American Mathematical Society (1998). | MR | Zbl

R. Everson and L. Sirovich, Karhunen–loeve procedure for gappy data. J. Optical Soc. Am. A 12 (1995) 1657–1664. | DOI

J. Fink and W. Rheinboldt, On the error behavior of the reduced basis technique for nonlinear finite element approximations. J. Appl. Math. Mech./Z. Angew. Math. Mech. 63 (1983) 21–28. | DOI | MR | Zbl

T. Gasser and H.G. Müller, Kernel estimation of regression functions. In Smoothing techniques for curve estimation. Springer (1979) 23–68. | MR | Zbl

L. Györfi, M. Kohler, A. Krzyzak and H. Walk, A distribution-free theory of nonparametric regression. Springer Science & Business Media (2006). | MR | Zbl

T. Hastie, R. Tibshirani and J. Friedman, The elements of statistical learning, 2nd edition. Springer (2009). | MR | Zbl

J.S. Hesthaven, G. Rozza and B. Stamm, Certified reduced basis methods for parametrized partial differential equations. SpringerBriefs in Mathematics (2015). | MR

Y. Hon, R. Schaback and X. Zhou, An adaptive greedy algorithm for solving large rbf collocation problems. Numer. Algorithms 32 (2003) 13–25. | DOI | MR | Zbl

M. Kahlbacher and S. Volkwein, Galerkin proper orthogonal decomposition methods for parameter dependent elliptic systems. Discuss. Math., Differ. Incl. Control Optim. 27 (2007) 95–117. | DOI | MR | Zbl

R.E. Kalman, A new approach to linear filtering and prediction problems. J. Fluids Eng. 82 (1960) 35–45. | MR

G. Kimeldorf and G. Wahba. Some results on tchebycheffian spline functions. J. Math. Anal. Appl. 33 (1971) 82–95. | DOI | MR | Zbl

R. Kohavi et al. A study of cross-validation and bootstrap for accuracy estimation and model selection. In IJCAI’95 Proc. of the 14th international joint conference on Artificial intelligence (1995) 1137–1145.

J. Krebs, A. Louis and H. Wendland, Sobolev error estimates and a priori parameter selection for semi-discrete tikhonov regularization. J. Inverse Ill Posed Probl. 17 (2009) 845–869. | DOI | MR | Zbl

K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal. 40 (2002) 492–515. | DOI | MR | Zbl

Z. Li and I. Navon, Optimality of variational data assimilation and its relationship with the kalman filter and smoother. Quarterly J. Royal Meteor. Soc. 127 (2001) 661–683. | DOI

J.S. Lim, Two-dimensional signal and image processing. Prentice Hall (1990).

A. Lorenc, A global three-dimensional multivariate statistical interpolation scheme. Monthly Weather Rev. 109 (1981) 701–721. | DOI

A.C. Lorenc, Analysis methods for numerical weather prediction. Royal Meteorolog. Soc., Quarterly J. 112 (1986) 1177–1194. | DOI

Y. Maday and O. Mula, A generalized empirical interpolation method: Application of reduced basis techniques to data assimilation. In Analysis and Numerics of Partial Differential Equations. Springer (2013) 221–235. | MR | Zbl

Y. Maday, O. Mula, A. Patera and M. Yano, The generalized empirical interpolation method: stability theory on hilbert spaces with an application to the stokes equation. Comput. Methods Appl. Mech. Eng. 287 (2015) 310–334. | DOI | MR | Zbl

Y. Maday, A.T. Patera, J.D. Penn and M. Yano, A parameterized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics. J. Numer. Meth. Eng. 102 (2015) 933–965. | DOI | MR | Zbl

Y. Maday, A.T. Patera, J.D. Penn and M. Yano, PBDW state estimation: Noisy observations; configuration-adaptive background spaces; physical interpretations. ESAIM: PROCS 50 (2015) 144–168. | DOI | MR | Zbl

S.C. Malik and S. Arora, Mathematical Analysis. New Age International (1992). | MR

S. Müller, Complexity and stability of kernel-based reconstructions. Ph.D. thesis, Dissertation, Georg-August-Universitttingen, Institut fr Numerische und Angewandte Mathematik, Lotzestrasse, D-37083 Göttingen (2009) 16–18.

M. Perego, A. Veneziani and C. Vergara, A variational approach for estimating the compliance of the cardiovascular tissue: An inverse fluid-structure interaction problem. SIAM J. Sci. Comput. 33 (2011) 1181–1211. | DOI | MR | Zbl

A. Pinkus, N-widths in Approximation Theory. Springer Science & Business Media (1985). | Zbl

T. Poggio and C. Shelton, On the mathematical foundations of learning. Amer. Math. Soc. 39 (2002) 1–49. | MR | Zbl

C. Prud’homme, D.V. Rovas, K. Veroy, L. Machiels, Y. Maday, A.T. Patera and G. Turinici, Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods. J. Fluids Eng. 124 (2002) 70–80. | DOI

C. Prud’homme, D.V. Rovas, K. Veroy and A.T. Patera, A mathematical and computational framework for reliable real-time solution of parametrized partial differential equations. ESAIM: M2AN 36 (2002) 747–771. | DOI | Numdam | MR | Zbl

A. Quarteroni, A. Manzoni and F. Negri, Reduced Basis Methods for Partial Differential Equations: An Introduction, Vol. 92. Springer (2015). | MR | Zbl

J. Rice, Mathematical statistics and data analysis. Nelson Education (2006). | Zbl

G. Rozza, D.P. Huynh and A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Archives Comput. Methods Eng. 15 (2008) 229–275. | DOI | MR | Zbl

R. Schaback and H. Wendland, Adaptive greedy techniques for approximate solution of large rbf systems. Numer. Algorithms 24 (2000) 239–254. | DOI | MR | Zbl

R.Ştefănescu and I.M. Navon, Pod/deim nonlinear model order reduction of an adi implicit shallow water equations model. J. Comput. Phys. 237 (2013) 95–114 | DOI | MR | Zbl

R.Ştefănescu, A. Sandu and I.M. Navon, Pod/deim reduced-order strategies for efficient four dimensional variational data assimilation. J. Comput. Phys. 295 (2015) 569–595. | DOI | MR | Zbl

T. Taddei, J.D. Penn and A.T. Patera, Experimental a posteriori error estimation by monte carlo sampling of observation functionals. Technical report, MIT (2016). Submitted to Int. J. Numer. Methods Eng. (2016).

O. Talagrand, Assimilation of observations, an introduction. J. Meteor. Soc. Jpn Ser. II 75 (1997) 81–99.

V. Vapnik, The nature of statistical learning theory. Springer Science & Business Media (2013). | MR | Zbl

P. Vermeulen and A. Heemink, Model-reduced variational data assimilation. Monthly Weather Rev. 134 (2006) 2888–2899. | DOI

G. Wahba, Improper priors, spline smoothing and the problem of guarding against model errors in regression. J. R. Stat. Soc. Ser. B, Methodol. 40 (1978) 364–372. | MR | Zbl

G. Wahba, Spline Models for Observational Data. In vol. 59 of CBMS-NSF Regional Conference Series in Applied Mathematics. Siam (1990). | MR | Zbl

H. Wendland, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4 (1995) 389–396. | DOI | MR | Zbl

H. Wendland, Scattered data approximation. Vol. 17. Cambridge university press (2004). | MR | Zbl

K. Willcox, Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition. Comput. Fluids 35 (2006) 208–226. | DOI | Zbl

E.G. Williams, Fourier acoustics: sound radiation and nearfield acoustical holography. Academic press (1999).

D. Wirtz and B. Haasdonk, A vectorial kernel orthogonal greedy algorithm. Proc. of DWCAA12 6 (2013) 83–100.

D. Xiao, F. Fang, A.G. Buchan, C.C. Pain, I.M. Navon, J. Du and G. Hu, Non-linear model reduction for the navier–stokes equations using residual deim method. J. Comput. Phys. 263 (2014) 1–18. | DOI | MR | Zbl

Cité par Sources :