A penalty method for a linear Koiter shell model
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 5, pp. 1783-1803.

In this paper a penalized method and its approximation by finite element method are proposed to solve Koiter’s equations for a thin linearly elastic shell. In addition to existence and uniqueness results of solutions of the continuous and the discrete problems we derive some a priori error estimates. We are especially interested in the behavior of the solution when the penalty parameter goes to zero. We propose here a new formulation that leads to a quasi optimal and uniform error estimate with respect to the penalized parameter. In other words, we are able to show that this method converges uniformly with respect to the penalized parameter and to the mesh size. Numerical tests that validate and illustrate our approach are given.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017009
Classification : 74K25, 65N30, 74S05
Mots-clés : Shell theory, Koiter’s model, finite elements error analysis
Merabet, Ismail 1 ; Nicaise, Serge 2

1 LMA, Université Kasi Merbah – Ouargla, 30000, Algérie.
2 LAMAV, Université de Valenciennes et du Hainaut-Cambrésis, Valenciennes cedex 9, France.
@article{M2AN_2017__51_5_1783_0,
     author = {Merabet, Ismail and Nicaise, Serge},
     title = {A penalty method for a linear {Koiter} shell model},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1783--1803},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {5},
     year = {2017},
     doi = {10.1051/m2an/2017009},
     mrnumber = {3731549},
     zbl = {1386.74089},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2017009/}
}
TY  - JOUR
AU  - Merabet, Ismail
AU  - Nicaise, Serge
TI  - A penalty method for a linear Koiter shell model
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 1783
EP  - 1803
VL  - 51
IS  - 5
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2017009/
DO  - 10.1051/m2an/2017009
LA  - en
ID  - M2AN_2017__51_5_1783_0
ER  - 
%0 Journal Article
%A Merabet, Ismail
%A Nicaise, Serge
%T A penalty method for a linear Koiter shell model
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 1783-1803
%V 51
%N 5
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2017009/
%R 10.1051/m2an/2017009
%G en
%F M2AN_2017__51_5_1783_0
Merabet, Ismail; Nicaise, Serge. A penalty method for a linear Koiter shell model. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 5, pp. 1783-1803. doi : 10.1051/m2an/2017009. http://archive.numdam.org/articles/10.1051/m2an/2017009/

D.N. Arnold and F. Brezzi, Locking-free finite element method for shells. Math. Comput. 66 (1997) 1–14. | DOI | MR | Zbl

F. Auricchio, L. Beirão Da Veiga and C. Lovadina, Remarks on the asymptotic behaviour of koiter shells. Comput. Struct. 80 (2002). | DOI | MR

I. Babuska, The finite element method with penalty. Math. Comput. 27 (1973) 221–228. | DOI | MR | Zbl

M. Bernadou, Méthode d’élements finis pour les problèmes de coques minces. Dunod (1994).

C. Bernardi, A. Blouza, F. Hecht and H. Le Dret, A posteriori analysis of finite element discretizations of a Naghdi shell model. IMA. J. Numer. Anal. 33 (2013) 190–211. | DOI | MR | Zbl

A. Blouza, L. El Alaoui and S. Mani−Aouadi, A posteriori analysis of penalized and mixed formulations of Koiter’s shell model. J. Comput. Appl. Math. 296 (2016) 138–155. | DOI | MR | Zbl

A. Blouza and H. Le Dret, Existence and uniqueness for the linear Koiter shell model with little regularity. Quarterly Appl. Math. 57 (1999) 317–338. | DOI | MR | Zbl

A. Blouza, F. Hecht and H. Le Dret, Two finite element approximations of Naghdi’s shell model in Cartesian coordinates. SIAM J. Numer. Anal. 44 (2006) 636–654. | DOI | MR | Zbl

K.-J. Bathe and L.-W. Ho, A simple and effective element for analysis of general shell structures. Comput. Struct. 13 (1981). | Zbl

J.H. Bramble and T. Sun, A locking-free finite element method for Naghdi shells. J. Comput. Appl. Math. 89 (1997) 119–133. | DOI | MR | Zbl

S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer Verlag, New York (2008). | MR

H. Brezis,Analyse fonctionnelle, Théorie et applications. Mathématiques Appliquées pour la Maîtrise. Masson, Paris (1983). | MR | Zbl

D. Chapelle and R. Stenberg, Stabilized finite element formulations for shells in a bending dominated state. SIAM J. Numer. Anal. 36 (1998) 32–73. | DOI | MR | Zbl

Ph.G. Ciarlet, The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications. North-Holland Amsterdam (1978). | MR | Zbl

Ph.G. Ciarlet, Mathematical elasticity. Theory of shells. III. Vol. 29 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam (2000). | MR | Zbl

M. Dauge and E. Faou, Koiter estimate revisited. Math. Models Methods Appl. Sci. 20 (2010) 1–42. | DOI | MR | Zbl

F. Hecht, New development in freefem++. J. Numer. Math. 20 (2010) 251–265. | MR | Zbl

J. Pitkäranta, Y. Leino, O. Ovaskainen and J. Piila, Shell deformation states and the finite element method: a benchmark study of cylindrical shells. Comput. Methods Appl. Mech. Eng. 181 (1995) 81–121. | DOI | MR | Zbl

W.T. Koiter,On the foundations of the linear theory of thin elastic shells. Number B73 in Wetensch. Proc. Kon. Ned. Akad (1970). | MR | Zbl

J.L. Lions. Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod-Gauthier-Viltars Paris (1969). | MR | Zbl

G.M. Lindberg, M.D. Olson and G.R. Cowper, New developments in the finite element analysis bf shells. Ouart. Bull. Div. Mech. Comput. 4 (1969).

P.-S. Lee and K-J. Bathe, On the asymptotic behavior of shell structures and the evaluation in finite element solutions. Comput. Struct. 80 (2002).

B. Maury, Numerical analysis of finite element/volume penalty method. SIAM J. Numer. Anal. 47 (2009) 1126–1148. | DOI | MR | Zbl

P.M. Naghdi, Foundations of elastic shell theory. In Vol. IV of Progress in Solid Mechanics. North-Holland, Amsterdam (1963) 1–90. | MR

T. Sun, A locking-free mixed finite element method for the Koiter shell model. In Proc. of The 3rd IMACS Inter. Symp. Iterative Methods Sci. Comput. Edited by Jackson Hole. Wyoming (1977) 307–312.

Cité par Sources :