Convergence of multi-revolution composition time-splitting methods for highly oscillatory differential equations of Schrödinger type
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 5, pp. 1859-1882.

The convergence behaviour of multi-revolution composition methods combined with time-splitting methods is analysed for highly oscillatory linear differential equations of Schrödinger type. Numerical experiments illustrate and complement the theoretical investigations.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017010
Classification : 34K33, 34G10, 35Q41, 65M12, 65N15
Mots-clés : Highly oscillatory differential equations, time-dependent Schrödinger equations, multi-revolution composition methods, operator splitting methods, local error, convergence
Chartier, Philippe 1 ; Méhats, Florian 2 ; Thalhammer, Mechthild 3 ; Zhang, Yong 4

1 INRIA-Rennes, IRMAR, ENS Rennes, Campus de Beaulieu, 35042 Rennes cedex, France.
2 Université de Rennes 1, INRIA-Rennes, IRMAR, Campus de Beaulieu, 35042 Rennes cedex, France.
3 Leopold–Franzens Universität Innsbruck, Institut für Mathematik, Technikerstraße 13/VII, 6020 Innsbruck, Austria.
4 Wolfgang Pauli Institut c/o Universität Wien, Fakultät für Mathematik, Oskar–Morgenstern–Platz 1, 1090 Wien, Austria.
@article{M2AN_2017__51_5_1859_0,
     author = {Chartier, Philippe and M\'ehats, Florian and Thalhammer, Mechthild and Zhang, Yong},
     title = {Convergence of multi-revolution composition time-splitting methods for highly oscillatory differential equations of {Schr\"odinger} type},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1859--1882},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {5},
     year = {2017},
     doi = {10.1051/m2an/2017010},
     zbl = {1421.65011},
     mrnumber = {3731552},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2017010/}
}
TY  - JOUR
AU  - Chartier, Philippe
AU  - Méhats, Florian
AU  - Thalhammer, Mechthild
AU  - Zhang, Yong
TI  - Convergence of multi-revolution composition time-splitting methods for highly oscillatory differential equations of Schrödinger type
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 1859
EP  - 1882
VL  - 51
IS  - 5
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2017010/
DO  - 10.1051/m2an/2017010
LA  - en
ID  - M2AN_2017__51_5_1859_0
ER  - 
%0 Journal Article
%A Chartier, Philippe
%A Méhats, Florian
%A Thalhammer, Mechthild
%A Zhang, Yong
%T Convergence of multi-revolution composition time-splitting methods for highly oscillatory differential equations of Schrödinger type
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 1859-1882
%V 51
%N 5
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2017010/
%R 10.1051/m2an/2017010
%G en
%F M2AN_2017__51_5_1859_0
Chartier, Philippe; Méhats, Florian; Thalhammer, Mechthild; Zhang, Yong. Convergence of multi-revolution composition time-splitting methods for highly oscillatory differential equations of Schrödinger type. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 5, pp. 1859-1882. doi : 10.1051/m2an/2017010. http://archive.numdam.org/articles/10.1051/m2an/2017010/

R.A. Adams, Sobolev Spaces. Academic Press, Orlando, Florida (1975). | MR | Zbl

W. Bao, Mathematical models and numerical methods for Bose–Einstein condensation. In Vol. IV of Proc. Inter. Congress Math. Seoul (2014) 971–996. | MR

W. Bao, P. Markowich, Ch. Schmeiser and R.M. Weishäupl, On the Gross–Pitaevski equation with strongly anisotropic confinement: formal asymptotics and numerical experiments. M3AS 15 (2005) 767–782. | MR | Zbl

N. Ben Abdallah, F. Méhats, Ch. Schmeiser and R.M. Weishäupl, The nonlinear Schrödinger equation with strong anisotropic harmonic potential. SIAM J. Math. Anal. 37 (2005) 189–199. | DOI | MR | Zbl

S. Blanes and P.C. Moan, Practical symplectic partitioned Runge–Kutta and Runge–Kutta–Nyström methods. J. Comput. Appl. Math. 142 (2002) 313–330. | DOI | MR | Zbl

R. Carles and E. Faou, Energy cascade for NLS on the torus. DCDS-A 32 (2012) 2063–2077. | DOI | MR | Zbl

Ph. Chartier, J. Makazaga, A. Murua and G. Vilmart, Multi-revolution composition methods for highly oscillatory differential equations. Numer. Math. 128 (2014) 167–192. | DOI | MR | Zbl

Ph. Chartier, F. Méhats, M. Thalhammer and Y. Zhang, Improved error estimates for splitting methods applied to highly-oscillatory nonlinear Schrödinger equations. Math. Comput. 85 (2016) 2863–2885. | DOI | MR | Zbl

Ph. Chartier, N. Mauser, F. Méhats and Y. Zhang, Solving highly-oscillatory NLS with SAM: numerical efficiency and geometric properties. Discrete Contin. Dyn. Systems – Ser. S 9 (2016) 1327–1349. | DOI | MR | Zbl

G. Dujardin and E. Faou, Normal form and long time analysis of splitting schemes for the linear Schrödinger equation with small potential. Numer. Math. 108 (2007) 223–262. | DOI | MR | Zbl

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations. Springer, New York (2000). | MR | Zbl

E. Faou, L. Gauckler and C. Lubich, Plane wave stability of the split-step Fourier method for the nonlinear Schrödinger equation. Forum Math. Sigma 2 (2014). Available at: | DOI | MR | Zbl

L. Gauckler, Convergence of a split-step Hermite method for the Gross–Pitaevskii equation. IMA J. Numer. Anal. 31 (2011) 396–415. | DOI | MR | Zbl

B. Grébert and L. Thomann, Resonant dynamics for the quintic nonlinear Schrödinger equation. Ann. Inst. Henri Poincaré Anal. Non Linéaire 29 (2012) 455–477. | DOI | Numdam | MR | Zbl

B. Grébert and C. Villegas-Blas, On the energy exchange between resonant modes in nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré Anal. Non Linéaire 28 (2011) 127–134. | DOI | Numdam | MR | Zbl

H. Hofstätter, O. Koch and M. Thalhammer, Convergence analysis of high-order time-splitting pseudo-spectral methods for Gross–Pitaevskii equations with rotation term. Numer. Math. 127 (2014) 315–364. | DOI | MR | Zbl

Ch. Lubich, On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations. Math. Comput. 77 (2008) 2141–2153. | DOI | MR | Zbl

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Appl. Math. Sci. Springer, New York 44 (1983). | MR | Zbl

M. Thalhammer, Convergence analysis of high-order time-splitting pseudospectral methods for nonlinear Schrödinger equations. SIAM J. Numer. Anal. 50 (2013) 3231–3258. | DOI | MR | Zbl

H. Triebel, Higher Analysis. Barth, Leipzig–Berlin–Heidelberg (1992). | MR | Zbl

G. Vilmart, Weak second order multi-revolution composition methods for highly oscillatory stochastic differential equations with additive or multiplicative noise. SIAM J. Sci. Comput. 36 (2014) 1770–1796. | DOI | MR | Zbl

H. Yoshida, Construction of higher order symplectic integrators. Phys. Lett. A 150 (1990) 262–268. | DOI | MR

Cité par Sources :