Convergence of a vector penalty projection scheme for the Navier Stokes equations with moving body
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1417-1436.

In this paper, we analyse a Vector Penalty Projection Scheme (see [1]) to treat the displacement of a moving body in incompressible viscous flows in the case where the interaction of the fluid on the body can be neglected. The presence of the obstacle inside the computational domain is treated with a penalization method introducing a parameter η to enforce the velocity on the solid boundary. The incompressibility constraint is approached using a Vector Projection method which introduces a relaxation parameter ε. We show the stability of the scheme and that the pressure and velocity converge towards a limit when the relaxation parameter ε and the time step δt tend to zero with a proportionality constraint ε = λδt. Finally, when η goes to 0, we show that the problem admits a weak limit which is a weak solution of the Navier-Stokes equations with no-slip condition on the solid boundary.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017016
Classification : 35Qxx, 65Mxx, 65Nxx, 74F10, 76D05, 76M25
Mots-clés : Navier-Stokes equations, Vector Penalty-projection methods, incompressible flows, moving body
Bruneau, Vincent 1 ; Doradoux, Adrien 2 ; Fabrie, Pierre 2

1 Université de Bordeaux, IMB, CNRS UMR5251, 351 cours de la libération, 33405 Talence, France
2 Bordeaux INP, Institut de Mathématiques de Bordeaux, CNRS UMR5251, ENSEIRB-MATMECA, Talence France
@article{M2AN_2018__52_4_1417_0,
     author = {Bruneau, Vincent and Doradoux, Adrien and Fabrie, Pierre},
     title = {Convergence of a vector penalty projection scheme for the {Navier} {Stokes} equations with moving body},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1417--1436},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {4},
     year = {2018},
     doi = {10.1051/m2an/2017016},
     mrnumber = {3875291},
     zbl = {1406.35220},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2017016/}
}
TY  - JOUR
AU  - Bruneau, Vincent
AU  - Doradoux, Adrien
AU  - Fabrie, Pierre
TI  - Convergence of a vector penalty projection scheme for the Navier Stokes equations with moving body
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 1417
EP  - 1436
VL  - 52
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2017016/
DO  - 10.1051/m2an/2017016
LA  - en
ID  - M2AN_2018__52_4_1417_0
ER  - 
%0 Journal Article
%A Bruneau, Vincent
%A Doradoux, Adrien
%A Fabrie, Pierre
%T Convergence of a vector penalty projection scheme for the Navier Stokes equations with moving body
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 1417-1436
%V 52
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2017016/
%R 10.1051/m2an/2017016
%G en
%F M2AN_2018__52_4_1417_0
Bruneau, Vincent; Doradoux, Adrien; Fabrie, Pierre. Convergence of a vector penalty projection scheme for the Navier Stokes equations with moving body. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1417-1436. doi : 10.1051/m2an/2017016. http://archive.numdam.org/articles/10.1051/m2an/2017016/

[1] P. Angot, J.P. Caltagirone and P. Fabrie, A fast vector penalty projection for incompressible non-homogeneous or multiphase Navier-Stokes problems. Appl. Math. Lett. 25 (2012) 1681–1688. | DOI | MR | Zbl

[2] P. Angot, J.P. Caltagirone and P. Fabrie, Analysis for the fast vector penalty-projection solver of incompressible multiphase Navier-Stokes/Brinkman problems. (2015). | HAL

[3] P. Angot and R. Cheaytou, Vector penalty-projection methods for incompressible fluid flows with open boundary conditions, in Algoritmy 2012. In Proc. of 19th Conference on Scientific Computing, V. Tatry, Podbanské. Slovakia, Sept. 9-14, edited by A Handlovicova et al. Slovak University of Technology in Bratislava, Publishing House of STU (Bratislava) (2012) 219–229. | Zbl

[4] P. Angot and P. Fabrie, Convergence results for the vector penalty-projection and two-step artificial compressibility methods. Discrete and Continuous Dynamical Systems, Series B 17 (2012) 1383–1405. | DOI | MR | Zbl

[5] T. Aubin, Un théorème de compacité. C.R. Acad. Sci. Paris 256 (1963) 5042–5044. | MR | Zbl

[6] M. Bergmann and A. Iollo, Modeling and simulation of fish-like swimming. J. Comput. Phys. 230 (2011) 329–348. | DOI | MR | Zbl

[7] C. Bost, G.H. Cottet and E. Maitre, Convergence analysis of a penalization method for the three-dimensional motion of a rigid body in an incompressible viscous fluid. SIAM J. Num. Anal. 48 (2010) 1313–1337. | DOI | MR | Zbl

[8] F. Boyer and P. Fabrie, Mathematical tools for the study of the incompressible Navier-Stokes Equations and related models. Springer (2013). | MR | Zbl

[9] A.J. Chorin, Numerical solutions of the Navier-Stokes equations. Math. Comput. 22 (1968) 745–762. | DOI | MR | Zbl

[10] C. Foias and R. Temam, Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation. Annali della Scuola Normale Superiore di Pisa -Classe di Scienze, Sér. 5 (1978) 29–63. | Numdam | MR | Zbl

[11] M. Fortin and R. Glowinski, Méthodes de Lagrangien Augmenté. Applications a la résolution numérique de problèmes aux limites. Dunod, Paris (1982). | MR | Zbl

[12] R.M. Franck and R.B. Lazarus, Mixed Eulerian Lagrangian method. Methods in Computational Physics. In Vol. 3 of Fundamental Methods in Hydrodynamics, edited by B.Alder, S.Fernbach and M.Rotenberg. Academic Press (1964) 47–67. | MR

[13] M. Gil, Difference equations in normed spaces: stability and oscillations. Elsevier (2007). | MR | Zbl

[14] V. Girault and P.A. Raviart, Finite Element Methods for the Navier-Stokes Equations. Springer Series in Computational Mathematics. Springer Verlag, New York 5 (1986). | DOI | MR | Zbl

[15] J.M. Holte, Discrete Gronwall lemma and applications. In MAA-NCS Meeting at the University of North Dakota (2009).

[16] A. Inoue and M. Wakimoto, On existence of solutions of the Navier-Stokes equation in a time dependent domain. J. Fac. Sci. Univ. Tokyo Sec. IA 24 (1977) 303–319. | MR | Zbl

[17] A. Korn, Die Eigenschwingungen eines elastichen Korpers mit ruhender Oberflache. Akad. der Wissensch Munich, Math-phys. KI, Beritche 36 (1906) 351–401. | JFM

[18] A. Korn, Ubereinige Ungleichungen, welche in der Theorie der elastichen und elektrischen Schwingungen eine Rolle spielen. Bulletin Internationale, Cracovie Akademie Umiejet, Classe de sciences mathematiques et naturelles (1909) 705–724. | JFM

[19] R. Mittal and G. Iaccarino. Immersed boundary methods. Ann. Rev. Fluid Mech. 37 (2005). | MR | Zbl

[20] T. Miyakawa and Y. Teramoto, Existence and periodicity of weak solutions of the Navier-Stokes equations in a time dependent domain. Hiroshima Math. J. 12 (1982) 513–528. | MR | Zbl

[21] W.F. Noh, CEL: A Time-Dependent, Two-Space-Dimensional, Coupled Eulerian-Lagrangian Code. Methods in Computational Physics. In Vol. 3 of Fundamental Methods in Hydrodynamics, edited by B. Alder, S. Fernbach and M.Rotenberg. Academic Press (1964) 117–179.

[22] C.S. Peskin, Flow around heart valves: A numerical method. J. Comput. Phys. 10 (1972) 252–271. | DOI | Zbl

[23] A. Quarteroni, Numerical Models for Differential Problems, vol. 8. Springer Science & Business (2014). | MR | Zbl

[24] J. Simon, Compact sets in the space lp(0,t; b). Ann. Mat. Pura. Appl. 4 (1987) 65–96. | MR | Zbl

[25] R. Temam, Une méthode d’approximation de la solution des équations de Navier Stokes. Bull. Soc. Math. France 98 (1968) 115–152. | DOI | Numdam | MR | Zbl

[26] R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, 3rd edition. In Vol. 2 of Studies in Applied Mathematics. North-Holland publishing Co., Amsterdam (1984). | MR | Zbl

Cité par Sources :