Cellulose biodegradation models; an example of cooperative interactions in structured populations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2289-2318.

We introduce various models for cellulose bio-degradation by micro-organisms. Those models rely on complex chemical mechanisms, involve the structure of the cellulose chains and are allowed to depend on the phenotypical traits of the population of micro-organisms. We then use the corresponding models in the context of multiple-trait populations. This leads to classical, logistic type, reproduction rates limiting the growth of large populations but also, and more surprisingly, limiting the growth of populations which are too small in a manner similar to the effects seen in populations requiring cooperative interactions (or sexual reproduction). This study thus offers a striking example of how some mechanisms resembling cooperation can occur in structured biological populations, even in the absence of any actual cooperation.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017021
Classification : 92-xx
Mots-clés : Mathematical biology, structured population dynamics
Jabin, Pierre-Emmanuel 1 ; Miroshnikov, Alexey 2 ; Young, Robin 3

1 Department of Mathematics, University of Maryland, College Park, USA.
2 Department of Mathematics, University of California, Los Angeles, USA.
3 Department of Mathematics and Statistics, University of Massachusetts Amherst, USA.
@article{M2AN_2017__51_6_2289_0,
     author = {Jabin, Pierre-Emmanuel and Miroshnikov, Alexey and Young, Robin},
     title = {Cellulose biodegradation models; an example of cooperative interactions in structured populations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2289--2318},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {6},
     year = {2017},
     doi = {10.1051/m2an/2017021},
     zbl = {1382.92185},
     mrnumber = {3745173},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2017021/}
}
TY  - JOUR
AU  - Jabin, Pierre-Emmanuel
AU  - Miroshnikov, Alexey
AU  - Young, Robin
TI  - Cellulose biodegradation models; an example of cooperative interactions in structured populations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 2289
EP  - 2318
VL  - 51
IS  - 6
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2017021/
DO  - 10.1051/m2an/2017021
LA  - en
ID  - M2AN_2017__51_6_2289_0
ER  - 
%0 Journal Article
%A Jabin, Pierre-Emmanuel
%A Miroshnikov, Alexey
%A Young, Robin
%T Cellulose biodegradation models; an example of cooperative interactions in structured populations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 2289-2318
%V 51
%N 6
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2017021/
%R 10.1051/m2an/2017021
%G en
%F M2AN_2017__51_6_2289_0
Jabin, Pierre-Emmanuel; Miroshnikov, Alexey; Young, Robin. Cellulose biodegradation models; an example of cooperative interactions in structured populations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2289-2318. doi : 10.1051/m2an/2017021. http://archive.numdam.org/articles/10.1051/m2an/2017021/

G. Barles and B. Perthame, Concentrations and constrained Hamilton-Jacobi equations arising in adaptive dynamics. Contemp. Math. Amer. Math. Soc. 439 (2007) 57–68, | DOI | MR | Zbl

R. Burger and I.M. Bomze, Stationary distributions under mutation-selection balance: structure and properties. Adv. Appl. Probl. 28 (1996) 227–251. | DOI | MR | Zbl

Á. Calcina and S. Cuadrado, Small mutation rate and evolutionarily stable strategies in infinite dimensional adaptive dynamics. J. Math. Biol. 48 (2004) 135–159. | DOI | MR | Zbl

N. Champagnat, R. Ferriére and G. Ben Arous. The canonical equation of adaptive dynamics: a mathematical view. Selection 2 (2001) 71–81.

N. Champagnat, A microscopic interpretation for adaptive dynamics trait substitution sequence models. Stoch. Process. Appl. 116 (2006) 1127–60. | DOI | MR | Zbl

N. Champagnat, R. Ferriére and S. Méléard, Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models. Theor. Popul. Biol. 69 (2006) 297–321. | DOI | Zbl

N. Champagnat, R. Ferriére and S. Méléard. From individual stochastic processes to macroscopic models in adaptive evolution. Stoch. Models 24 (2008) 2–44. | DOI | MR | Zbl

N. Champagnat, P.-E. Jabin and G. Raoul, Convergence to equilibrium in competitive Lotka-Volterra and chemostat systems. C. R. Math. Acad. Sci. Paris 348 (2010) 1267–72. | DOI | MR | Zbl

L. Desvillettes, P.-E. Jabin, S. Mischler and G. Raoul, On selection dynamics for continuous structured populations. Commun. Math. Sci.6 (2008) 729–747. | DOI | MR | Zbl

U. Dieckmann and R. Law, The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol. 34 (1996) 579–612. | DOI | MR | Zbl

O. Diekmann, M. Gyllenberg, H. Huang, M. Kirkilionis, J.A.J. Metz and H.R. Thieme. On the formulation and analysis of general deterministic structured population models. II. Nonlinear theory. J. Math. Biol. 43 (2001) 157–189. | DOI | MR | Zbl

O. Diekmann, A beginner’s guide to adaptive dynamics. In vol. 63 of Mathematical modelling of population dynamics, Banach Center Publ., Polish Acad. Sci., Warsaw (2004) 47–86. | MR | Zbl

O. Diekmann, P.E. Jabin, S. Mischler and B. Perthame, The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach. Theor. Popul. Biol. 67 (2005) 257–271. | DOI | Zbl

R. Ferrière, J.L. Bronstein, S. Rinaldi, R. Law and M. Gauduchon (2002). Cheating and the evolutionary stability of mutualisms. Proc. R. Soc. London B 269 (2002) 773–780. | DOI

J.F. Le Galliard, R. Ferrière and U. Dieckmann, The adaptive dynamics of altruism in spatially heterogeneous populations. Evolution 57 (2003) 1–17.

S. Ghosal and S. Mandre, A simple model illustrating the role of turbulent life on phytoplankton blooms. J. Math. Biol. 46 (2003) 333–346. | DOI | MR | Zbl

K. Gopalsamy, Global asymptotic stability in Volterra’s population systems. J. Math. Biol. 19 (1984) 157–168. | DOI | MR | Zbl

M. Gyllenberg and G. Meszéna, On the impossibility of coexistence of infinitely many strategies. J. Math. Biol. 50 (2005) 133–160. | DOI | MR | Zbl

M.W. Hirsch, Systems of differential equations which are competitive or cooperative. III. Competing species. Nonlinearity 1 (1988) 51–71. | DOI | MR | Zbl

J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998). | MR | Zbl

P.E. Jabin and G. Raoul, Selection dynamics with competition. J. Math. Biol. 63 (2011) 493–517. | DOI | MR | Zbl

P.E. Jabin, Small populations corrections for selection-mutation models. Netw. Heterog. Media 7 (2012) 805–836. | DOI | MR | Zbl

E.I. Jones, R. Ferriére and J.L. Bronstein, Eco-evolutionary dynamics of mutualists and exploiters. The American Naturalist 174 (2009) 780–794. | DOI

E.I. Jones, J.L. Bronstein and R. Ferrière, The fundamental role of competition in the ecology and evolution of mutualisms. Ann NY Acad Sci. 1256 (2012) 66–88. | DOI

B. Perthame, Transport Equations in Biology. Birkhouser Verlag (2007). | MR | Zbl

B. Perthame and M. Gauduchon, Survival thresholds and mortality rates in adaptive dynamics: conciliating deterministic and stochastic simulations. IMA J. Math. Med. Biology (2009). | MR | Zbl

H.Smith and P. Waltman. The Theory of the Chemostat. Dynamics of Microbial Competition. Cambridge University Press (1995). | MR | Zbl

J.N. Holland and D.L. Deangelis. A consumer-resource approach to the density-dependent population dynamics of mutualism. Ecology 91 (2010) 1286–95. | DOI

E.T. Kiers, T.M. Palmer, A.R. Ives, J.F. Bruno and J.L. Bronstein, Mutualisms in a changing world: an evolutionary perspective. Ecol. Lett. 13 (2010) 1459–1474. | DOI

K. Krisztina and S. Kovács Qualitative behavior of n-dimensional ratio-dependent predator-prey systems. Appl. Math. Comput. 199 (2008) 535–546. | MR | Zbl

S.B. Leshine, Cellulose degradation in anaerobic environments. Annu. Rev. Microb. 49 (1995) 399–426. | DOI

L.R. Lynd, P.J. Weimer, W.H. Van Zyl and I.S. Pretorius, Microbial Cellulose Utilization: Fundamentals and Biotechnology. Microbiol. Molecular Biol. Rev. 66 (2002) 506–577. | DOI

G.F. Lawler, Introduction to Stochastic Processes. Chapman and Hall/CRC (1995). | MR | Zbl

S. Méléard, Introduction to stochastic models for evolution. Markov Process Relat. Fields 15 (2009) 259–264. | MR | Zbl

J.A.J. Metz, R.M. Nisbet and S.A.H. Geritz, How should we define ’fitness’ for general ecological scenarios? Trends Ecol. Evol. 7 (1992) 198–202. | DOI

J.A.J. Metz, S.A.H. Geritz, G. Meszena, F.J.A. Jacobs and J.S. van Heerwaarden, Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. In Stochastic and spatial structures of dynamical systems. Amsterdam (1995) 183–231, Konink. Nederl. Akad. Wetensch. Verh. Afd. Natuurk. Eerste Reeks, 45. North-Holland, Amsterdam (1996). | MR | Zbl

A. Novick and L. Szilard, Experiments with the Chemostat on Spontaneous Mutations of Bacteria. PNAS 36 (1950) 708–719. | DOI

T.G. Platt and J.D. Bever. Kin competition and the evolution of cooperation. Trends Ecol. Evol. 24 (2009) 370–7. | DOI

G. Raoul, Long time evolution of populations under selection and rare mutations. Acta Appl. Math. 114 (2011) 1–14. | DOI | MR | Zbl

H.M. Taylor and S. Karlin, An introduction to Stochastic Modeling. Academic Press (1998). | MR | Zbl

M.L. Zeeman, Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems. Dyn. Stab. Syst. 8 (1993) 189–217. | MR | Zbl

Cité par Sources :