Semi-discrete error estimates and implementation of a mixed method for the Stefan problem
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2093-2126.

We analyze a dual formulation and finite element method for simulating the Stefan problem with surface tension (originally presented in [C.B. Davis and S.W. Walker, Int. Free Bound. 17 (2015) 427–464]). The method uses a mixed form of the heat equation in the solid and liquid (bulk) domains, and imposes a weak formulation of the interface motion law (on the solid-liquid interface) as a constraint. The computational method uses a conforming mesh approach to accurately capture the jump conditions across the interface. Preliminary error estimates are derived, under reduced regularity assumptions, for the difference between the time semi-discrete solution and the fully discrete solution over one time step. Moreover, details of the implementation are discussed including mesh generation issues. Several simulations of interface growth (in two dimensions) are presented to illustrate the method.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017022
Classification : 65M60, 35K20
Mots clés : Stefan problem, mixed method, energy stability, error estimate, interface motion, semi-implicit scheme, re-meshing, conforming mesh
Davis, Ch. B. 1 ; Walker, Sh. W. 2

1 Department of Mathematics, Tennessee Tech University, 1 William L Jones Dr, Cookeville, TN 38505, USA.
2 Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803-4918, USA.
@article{M2AN_2017__51_6_2093_0,
     author = {Davis, Ch. B. and Walker, Sh. W.},
     title = {Semi-discrete error estimates and implementation of a mixed method for the {Stefan} problem},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2093--2126},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {6},
     year = {2017},
     doi = {10.1051/m2an/2017022},
     mrnumber = {3745166},
     zbl = {1383.80005},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2017022/}
}
TY  - JOUR
AU  - Davis, Ch. B.
AU  - Walker, Sh. W.
TI  - Semi-discrete error estimates and implementation of a mixed method for the Stefan problem
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 2093
EP  - 2126
VL  - 51
IS  - 6
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2017022/
DO  - 10.1051/m2an/2017022
LA  - en
ID  - M2AN_2017__51_6_2093_0
ER  - 
%0 Journal Article
%A Davis, Ch. B.
%A Walker, Sh. W.
%T Semi-discrete error estimates and implementation of a mixed method for the Stefan problem
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 2093-2126
%V 51
%N 6
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2017022/
%R 10.1051/m2an/2017022
%G en
%F M2AN_2017__51_6_2093_0
Davis, Ch. B.; Walker, Sh. W. Semi-discrete error estimates and implementation of a mixed method for the Stefan problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2093-2126. doi : 10.1051/m2an/2017022. http://archive.numdam.org/articles/10.1051/m2an/2017022/

R.A. Adams and J.J.F. Fournier, Sobolev Spaces. Vol. 140 of Pure and Applied Mathematics Series. Elsevier, 2nd edition (2003). | MR | Zbl

R. Almgren, Variational algorithms and pattern formation in dendritic solidification. J. Comput. Phys. 106 (1993) 337–354. | DOI | MR | Zbl

E. Bänsch, Finite element discretization of the navier-stokes equations with a free capillary surface. Numer. Math. 88 (2001) 203–235. | DOI | MR | Zbl

E. Bänsch and K. Deckelnick, Optimal error estimates for the stokes and navier-stokes equations with slip-boundary condition. ESAIM: M2AN 33 (1999) 923–938. | DOI | Numdam | MR | Zbl

E. Bänsch, J. Paul and A. Schmidt, An ale finite element method for a coupled stefan problem and navierstokes equations with free capillary surface. Int. J. Numer. Methods Fluids 71 (2013) 1282–1296. | DOI | MR | Zbl

J.W. Barrett, H. Garcke and R. Nürnberg, On stable parametric finite element methods for the stefan problem and the mullins-sekerka problem with applications to dendritic growth. J. Comput. Phys. 229 (2010) 6270–6299. | DOI | MR | Zbl

W.J. Boettinger, J.A. Warren, C. Beckermann and A. Karma, Phase-field simulation of solidification. Annu. Rev. Mat. Res. 32 (2002) 163–194. | DOI

D. Boffi, F. Brezzi and M. Fortin,Mixed Finite Element Methods and Applications. Vol. 44 of Springer Series in Computational Mathematics. Springer-Verlag, New York, NY (2013). | MR | Zbl

D. Boffi and L. Gastaldi, Analysis of finite element approximation of evolution problems in mixed form. SIAM J. Numer. Anal. 42 (2005) 1502–1526. | DOI | MR | Zbl

D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics. Cambridge University Press, 2nd edition (2001). | MR | Zbl

S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, vol. 15 of Texts in Applied Mathematics. Springer, New York, NY, 3rd edition (2008). | MR | Zbl

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Verlag, New York, NY (1991). | MR | Zbl

S. Chen, B. Merriman, S. Osher and P. Smereka, A simple level set method for solving stefan problems. J. Comput. Phys. 135 (1997) 8–29. | DOI | MR | Zbl

X. Chen and F. Reitich, Local existence and uniqueness of solutions of the stefan problem with surface tension and kinetic undercooling. J. Math. Anal. Appl. 164 (1992) 350–362. | DOI | MR | Zbl

C.H.A. Cheng, D. Coutand and S. Shkoller, Navier-stokes equations interacting with a nonlinear elastic biofluid shell. SIAM J. Math. Anal. 39 (2007) 742–800. | DOI | MR | Zbl

C.B. Davis and S.W. Walker, A mixed formulation of the Stefan problem with surface tension. Int. Free Bound. 17 (2015) 427–464. | DOI | MR | Zbl

S.H. Davis, Theory of Solidification. Cambridge Monographs on Mechanics. Cambridge University Press (2001). | MR | Zbl

M.C. Delfour and J.-P. Zolésio, Shapes and Geometries: Analysis, Differential Calculus, and Optimization, volume 4 of Advances in Design and Control. SIAM, 2nd edition (2011). | Zbl

M.P. do Carmo, Differential Geometry of Curves and Surfaces. Prentice Hall, Upper Saddle River, New Jersey (1976). | Zbl

R.R. Duchon, Jean, Évolution d’une interface par capillarité et diffusion de volume. I. Existence locale en temps. Ann. Inst. Henri Poincaré, (C) Anal. Non Lin. 1 (1984) 361–378. | DOI | Numdam | MR | Zbl

G. Dziuk, An algorithm for evolutionary surfaces. Numer. Math. 58 (1990) 603–611. | DOI | MR | Zbl

G. Dziuk and C.M. Elliott, Finite element methods for surface pdes. Acta Numer. 22 (2013) 289–396. | DOI | MR | Zbl

J. Escher, G. Simonett, N. Alikakos and P. Bates. Classical solutions for hele-shaw models with surface tension. Adv. Differ. Equ. 2 (1997) 619–642. | MR | Zbl

R.S. Falk and S.W. Walker, A mixed finite element method for EWOD that directly computes the position of the moving interface. SIAM J. Numer. Anal. 51 (2013) 1016–1040. | DOI | MR | Zbl

M. Fried, A level set based finite element algorithm for the simulation of dendritic growth. Comput. Vis. Sci. 7 (2004) 97–110. | DOI | MR | Zbl

A. Friedman and F. Reitich, The Stephan problem with small surface tension. Trans. Amer. Math. Soc. 328 (1991) 465–515. | DOI | MR | Zbl

H. Garcke and S. Schaubeck, Existence of weak solutions for the Stephan problem with anisotropic Gibbs–Thomson law. Adv. Math. Sci. Appl. 21 (2011) 255–283. | MR | Zbl

G.N. Gatica, A Simple Introduction to the Mixed Finite Element Method: Theory and Applications. SpringerBriefs in Mathematics. Springer (2014). | MR | Zbl

G.N. Gatica, R. Oyarzúa and F.-J. Sayas, Analysis of fully-mixed finite element methods for the stokes-darcy coupled problem. Math. Comput. 80 (2011) 1911–1948. | DOI | MR | Zbl

J.-F. Gerbeau and T. Lelièvre, Generalized navier boundary condition and geometric conservation law for surface tension. Comput. Methods Appl. Mechanics Eng. 198 (2009) 644–656. | DOI | MR | Zbl

J.-F. Gerbeau, T. Lelièvre and C.L. Bris, Simulations of MHD flows with moving interfaces. J. Comput. Phys. 184 (2003) 163–191. | DOI | MR | Zbl

M.E. Gurtin, Multiphase thermomechanics with interfacial structure 1. heat conduction and the capillary balance law. Arch. Ration. Mech. Anal. 104 (1988) 195–221. | DOI | MR | Zbl

M.E. Gurtin, Thermomechanics of Evolving Phase Boundaries in the Plane. Oxford Mathematical Monographs. Oxford Science Publication (1993). | MR | Zbl

G.A. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach For Engineering. John Wiley and Sons, Inc. (2000). | MR | Zbl

D. Juric and G. Tryggvason, A front-tracking method for dendritic solidification. J. Comput. Phys. 123 (1996) 127 – 148. | DOI | MR | Zbl

R. Kobayashi, A numerical approach to three-dimensional dendritic solidification. Exp. Math. 3 (1994) 59–81. | DOI | MR | Zbl

C. Kraus, The degenerate and non-degenerate stefan problem with inhomogeneous and anisotropic gibbsthomson law. Eur. J. Appl. Math. 22 (2011) 393–422. | DOI | MR | Zbl

E. Kreyszig, Differential Geometry. Dover (1991). | MR

J.S. Langer, Instabilities and pattern formation in crystal growth. Rev. Mod. Phys. 52 (1980) 1–28. | DOI

M. Lenoir, Optimal isoparametric finite elements and error estimates for domains involving curved boundaries. SIAM J. Numer. Anal. 23 (1986) 562–580. | DOI | MR | Zbl

S. Luckhaus, Solutions for the two-phase stefan problem with the gibbs-thomson law for the melting temperature. In Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids, edited by J.M. Ball, D. Kinderlehrer, P. Podio-Guidugli and M. Slemrod. Springer Berlin Heidelberg, (1999) 317–327. | MR

S. Luckhaus and T. Sturzenhecker, Implicit time discretization for the mean curvature flow equation. Cal. Var. Partial Differ. Equ. 3 (1995) 253–271. | DOI | MR | Zbl

A. Márquez, S. Meddahi and F.-J. Sayas, Strong coupling of finite element methods for the stokes-darcy problem. IMA J. Numer. Anal. 35 (2014) 969–988. | DOI | MR | Zbl

W.W. Mullins and R.F. Sekerka, Morphological stability of a particle growing by diffusion or heat flow. J. Appl. Phys. 34 (1963) 323–329. | DOI

W. W. Mullins and R.F. Sekerka, Stability of a planar interface during solidification of a dilute binary alloy. J. Appl. Phys. 35 (1964) 444–451. | DOI

S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag, New York, NY (2003). | MR | Zbl

J. Prüss, J. Saal and G. Simonett, Existence of analytic solutions for the classical stefan problem. Math. Ann. 338 (2007) 703–755. | DOI | MR | Zbl

J. Prüss and G. Simonett, Stability of equilibria for the stefan problem with surface tension. SIAM J. Math. Anal. 40 (2008) 675–698. | DOI | MR | Zbl

J. Prüss, G. Simonett and M. Wilke, On thermodynamically consistent stefan problems with variable surface energy. Arch. Ration. Mech. Anal. 220 (2016) 603–638. | DOI | MR | Zbl

J. Prüss, G. Simonett and R. Zacher, Qualitative behavior of solutions for thermodynamically consistent stefan problems with surface tension. Arch. Ration. Mech. Anal. 207 (2013) 611–667. | DOI | MR | Zbl

M. Röger, Existence of weak solutions for the mullins–sekerka flow. SIAM J. Math. Anal. 37 (2005) 291–301. | DOI | MR | Zbl

A.R. Roosen and J.E. Taylor, Modeling crystal growth in a diffusion field using fully faceted interfaces. J. Comput. Phys. 114 (1994) 113–128. | DOI | MR | Zbl

A. Schmidt, Computation of three dimensional dendrites with finite elements. J. Comput. Phys. 125 (1996) 293–312. | DOI | Zbl

A. Schmidt, Approximation of crystalline dendrite growth in two space dimensions. Acta Math. Univ. Comenianae 67 (1998) 57–68. | MR | Zbl

A. Schmidt and K.G. Siebert,Design of Adaptive Finite Element Software: The Finite Element Toolbox ALBERTA. Springer, Heidelberg, Germany (2005). | MR | Zbl

S.A. Sethian, Level Set Methods and Fast Marching Methods, 2nd Edition. Cambridge University Press, New York, NY (1999). | MR | Zbl

I. Singer-Loginova and H.M. Singer, The phase field technique for modeling multiphase materials. Rep. Progress Phys. 71 (2008) 106–501. | DOI

L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces. Vol. 3 of Lecture Notes of the Unione Matematica Italiana. Springer (2007). | MR | Zbl

R.M. Temam and A.M. Miranville, Mathematical Modeling in Continuum Mechanics. Cambridge University Press, 2nd edition (2005). | MR | Zbl

A. Visintin, Models of Phase Transitions, vol. 28 of Progress in Nonlinear Differential Equations. Birkhäuser, Boston (1996). | MR | Zbl

V.V. Voronkov, Conditions for formation of mosaic structure on a crystallization front. Sov. Phys. Solid State 6 (1965) 2378–2381.

S.W. Walker, FELICITY: Finite ELement Implementation and Computational Interface Tool for You. Available at http://www.mathworks.com/matlabcentral/fileexchange/31141-felicity.

S.W. Walker, Modeling, Simulating and Controlling the Fluid Dynamics of Electro-Wetting On Dielectric. Ph.D. thesis, University of Maryland, College Park (2007).

S.W. Walker, Tetrahedralization of isosurfaces with guaranteed-quality by edge rearrangement (TIGER). SIAM J. Sci. Comput. 35 (2013) A294–A326. | DOI | MR | Zbl

S.W. Walker, The Shapes of Things: A Practical Guide to Differential Geometry and the Shape Derivative. Vol. 28 of Advances in Design and Control. 1st edition. SIAM (2015). | MR

S.W. Walker, FELICITY: A matlab/c++ toolbox for developing finite element methods and simulation modeling. (2017). | MR

S.W. Walker, A. Bonito and R.H. Nochetto, Mixed finite element method for electrowetting on dielectric with contact line pinning. Int. Free Bound. 12 (2010) 85–119. | DOI | MR | Zbl

Cité par Sources :