Analysis of a mimetic finite difference approximation of flows in fractured porous media
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 2, pp. 595-630.

We consider the mixed formulation for Darcy’s flow in fractured media. We give a well-posedness result that does not rely on the imposition of pressure in part of the boundary of the fracture network, thus including a fully immersed fracture network. We present and analyze a mimetic finite difference formulation for the problem, providing convergence results and numerical tests.

DOI : 10.1051/m2an/2017028
Classification : 65N12, 65N99, 76S05
Mots clés : Flow in porous media, fracture networks, mimetic finite difference
Formaggia, Luca 1 ; Scotti, Anna 1 ; Sottocasa, Federica 1

1
@article{M2AN_2018__52_2_595_0,
     author = {Formaggia, Luca and Scotti, Anna and Sottocasa, Federica},
     title = {Analysis of a mimetic finite difference approximation of flows in fractured porous media},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {595--630},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {2},
     year = {2018},
     doi = {10.1051/m2an/2017028},
     mrnumber = {3834437},
     zbl = {1404.65228},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2017028/}
}
TY  - JOUR
AU  - Formaggia, Luca
AU  - Scotti, Anna
AU  - Sottocasa, Federica
TI  - Analysis of a mimetic finite difference approximation of flows in fractured porous media
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 595
EP  - 630
VL  - 52
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2017028/
DO  - 10.1051/m2an/2017028
LA  - en
ID  - M2AN_2018__52_2_595_0
ER  - 
%0 Journal Article
%A Formaggia, Luca
%A Scotti, Anna
%A Sottocasa, Federica
%T Analysis of a mimetic finite difference approximation of flows in fractured porous media
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 595-630
%V 52
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2017028/
%R 10.1051/m2an/2017028
%G en
%F M2AN_2018__52_2_595_0
Formaggia, Luca; Scotti, Anna; Sottocasa, Federica. Analysis of a mimetic finite difference approximation of flows in fractured porous media. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 2, pp. 595-630. doi : 10.1051/m2an/2017028. http://archive.numdam.org/articles/10.1051/m2an/2017028/

[1] P. Adler, J.-F. Thovert and V. Mourzenko, Fractured Porous Media. Oxford University Press (2013). | MR | Zbl

[2] C. Alboin, J. Jaffré, J.E. Roberts, X. Wang and C. Serres, Domain Decomposition for Some Transmission Problems in Flow in Porous Media. Vol. 552 of Lecture Notes in Physics. Springer, Berlin (2000) 22–34. | DOI | MR | Zbl

[3] O. Al-Hinai, S. Srinivasan and M.F. Wheeler, Mimetic finite differences for flow in fractures from microseismic data, in SPE Reservoir Simulation Symposium, 23–25 February, Houston, Texas, USA. Society of Petroleum Engineers (2015).

[4] P. Angot, F. Boyer and F. Hubert. Asymptotic and numerical modelling of flows in fractured porous media. ESAIM: M2AN 43 (2009) 239–275. | DOI | Numdam | MR | Zbl

[5] P.F. Antonietti, L. Beirão Da Veiga and M. Verani, A mimetic discretization of elliptic obstacle problems. Math. Comp. 82 (2013) 1379–1400. | DOI | MR | Zbl

[6] P.F. Antonietti, N. Bigoni and M. Verani, Mimetic discretizations of elliptic control problems. J. Sci. Comput. 56 (2013) 14–27. | DOI | MR | Zbl

[7] P. Antonietti, L. Beirão Da Veiga, N. Bigoni and M. Verani, Mimetic finite differences for nonlinear and control problems. Math. Model. Methods Appl. Sci. 24 (2014) 1457–1493. | DOI | MR | Zbl

[8] P.F. Antonietti, N. Bigoni and M. Verani, Mimetic finite difference approximation of quasilinear elliptic problems. Calcolo 52 (2015) 45–67. | DOI | MR | Zbl

[9] P. Antonietti, C. Facciolà, A. Russo and M. Verani, Discontinuous Galerkin approximation of flows in fractured porous media. Technical Report 22/2016, MOX, Politecnico di Milano (2016).

[10] P.F. Antonietti, L. Formaggia, A. Scotti, M. Verani and N. Verzotti, Mimetic finite difference approximation of flows in fractured porous media. ESAIM: M2AN 50 (2016) 809–832. | DOI | Numdam | MR | Zbl

[11] T. Arbogast, J. Douglas Jr. and U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. 21 (1990) 823–836. | DOI | MR | Zbl

[12] M.F. Benedetto, S. Berrone, S. Pieraccini and S. Scialò, The virtual element method for discrete fracture network simulations. Comput. Methods Appl. Mech. Eng. 280 (2014) 135–156. | DOI | MR | Zbl

[13] M.F. Benedetto, S. Berrone and S. Scialò, A globally conforming method for solving flow in discrete fracture networks using the virtual element method. Finite Elem. Anal. Des. 109 (2016) 23–36. | DOI

[14] B. Berkowitz, Characterizing flow and transport in fractured geological media: a review. Adv. Water Res. 25 (2002) 861–884. | DOI

[15] D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Vol. 44 of Springer Series in Computational Mathematics. Springer, Heidelberg (2013). | MR | Zbl

[16] W. Boon and J. Nordbotten, Robust Discretization of Flow in Fractured Porous Media. Preprint arXiv: (2016). | arXiv | MR

[17] S. Brenner and L. Scott. The Mathematical Theory of Finite Element Methods. Springer, Berlin, Heidelberg (1994). | DOI | MR | Zbl

[18] K. Brenner, J. Hennicker, R. Masson and P. Samier, Gradient discretization of hybrid dimensional Darcy flows in fractured porous media with discontinuous pressures at the matrix fracture interfaces. IMA J. Numer. Anal. 37 (2017) 1551–1585 | MR | Zbl

[19] F. Brezzi, K. Lipnikov and M. Shashkov, Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM: J. Numer. Anal. 43 (2006) 1872–1896. | MR | Zbl

[20] F. Brezzi, K. Lipnikov, M. Shashkov and V. Simoncini, A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput. Methods Appl. Mech. Eng. 196 (2007) 3682–3692. | DOI | MR | Zbl

[21] C. D’Angelo and A. Scotti, A mixed finite element method for Darcy flow in fractured porous media with non-matching grids. ESAIM: M2AN 46 (2012) 465–489. | DOI | Numdam | Zbl

[22] F. Dassi,S. Perotto, L. Formaggia and P. Ruffo, Efficient geometric reconstruction of complex geological structures. Math. Comput. Simul. 106 (2014) 163–184. | DOI | MR | Zbl

[23] L.B. Da Veiga, K. Lipnikov and G. Manzini, Convergence analysis of the high-order mimetic finite difference method. Numer. Math. 113 (2009) 325–356. | DOI | MR | Zbl

[24] B. Da Veiga Lourenco, K. Lipnikov and G. Manzini. The Mimetic Finite Difference Method for Elliptic Problems. Vol. 11 of MS&A. Modeling, Simulation and Applications. Springer, Cham (2014). | MR | Zbl

[25] I. Faille, A. Fumagalli, J. Jaffré and J.E. Roberts, Model reduction and discretization using hybrid finite volumes for flow in porousmedia containing faults. Comput. Geosci. 20 (2016) 317–339. | DOI | MR | Zbl

[26] L. Formaggia, A. Fumagalli, A. Scotti and P. Ruffo, A reduced model for Darcy’s problem in networks of fractures. ESAIM: M2AN 48 (2014) 1089–1116. | DOI | Numdam | MR | Zbl

[27] A. Fumagalli and E. Keilegavlen, Dual virtual element method for discrete fractures networks. SIAM: J. Sci. Comput. 40 (2018) B228–B258. | MR | Zbl

[28] A. Fumagalli and A. Scotti. A reduced model for flow and transport in fractured porous media with non-matching grids, in Proc. of ENUMATH 2011, the 9th European Conference on Numerical Mathematics and Advanced Applications. Springer-Verlag (2012). | MR | Zbl

[29] A. Fumagalli and A. Scotti, A numerical method for two-phase flow in fractured porous media with non-matching grids. Adv. Water Res. 62 (2013) 454–464. Computational Methods in Geologic CO2 Sequestration. | DOI

[30] A. Fumagalli and A. Scotti, An efficient XFEM approximation of Darcy flows in arbitrarily fractured porous media. Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles 69 (2014) 555–564. | DOI

[31] H. Huang, T. A. Long, J. Wan and W. P. Brown, On the use of enriched finite element method to model subsurface features in porous media flow problems. Comput. Geosci. 15 (2011) 721–736. | DOI | MR | Zbl

[32] J. Jaffré, M. Mnejja and J.E. Roberts, A discrete fracture model for two-phase flow with matrix-fracture interaction. Procedia Comput. Sci. 4 (2011) 967–973 | DOI

[33] M. Karimi-Fard, L. Durlofsky, K. Aziz, et al. An efficient discrete-fracture model applicable for general-purpose reservoir simulators. SPE J. 9 (2004) 227–236. | DOI

[34] B. Mallison, M. Hui and W. Narr, Practical gridding algorithms for discrete fracture modeling workflows, in 12th European Conference on the Mathematics of Oil Recovery (2010). | DOI

[35] V. Martin, J. Jaffré, and J.E. Roberts, Modeling fractures and barriers as interfaces for flow in porous media. SIAM: J. Sci. Comput. 26 (2005) 1667–1691. | MR | Zbl

[36] N. Schwenck, B. Flemisch, R. Helmig and B.I. Wohlmuth, Dimensionally reduced flow models in fractured porous media: crossings and boundaries. Comput. Geosci. 19 (2015) 1219–1230. | DOI | MR | Zbl

Cité par Sources :