A semi-discrete large-time behavior preserving scheme for the augmented Burgers equation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2367-2398.

In this paper we analyze the large-time behavior of the augmented Burgers equation. We first study the well-posedness of the Cauchy problem and obtain L 1 -L p decay rates. The asymptotic behavior of the solution is obtained by showing that the influence of the convolution term K*u xx is the same as u xx for large times. Then, we propose a semi-discrete numerical scheme that preserves this asymptotic behavior, by introducing two correcting factors in the discretization of the non-local term. Numerical experiments illustrating the accuracy of the results of the paper are also presented.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017029
Classification : 35B40, 65M12, 35Q35
Mots-clés : Augmented Burgers equation, numerical approximation, large-time behavior
Ignat, Liviu I. 1 ; Pozo, Alejandro 2, 3

1 Institute of Mathematics “Simion Stoilow” of the Romanian Academy, 21 Calea Grivitei Street, 010702 Bucharest, Romania.
2 Asociación Innovalia, Carretera de Asua 6, 48930 Las Arenas - Getxo, Spain.
3 BCAM - Basque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009 Bilbao, Spain.
@article{M2AN_2017__51_6_2367_0,
     author = {Ignat, Liviu I. and Pozo, Alejandro},
     title = {A semi-discrete large-time behavior preserving scheme for the augmented {Burgers} equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2367--2398},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {6},
     year = {2017},
     doi = {10.1051/m2an/2017029},
     mrnumber = {3745175},
     zbl = {1394.65089},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2017029/}
}
TY  - JOUR
AU  - Ignat, Liviu I.
AU  - Pozo, Alejandro
TI  - A semi-discrete large-time behavior preserving scheme for the augmented Burgers equation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 2367
EP  - 2398
VL  - 51
IS  - 6
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2017029/
DO  - 10.1051/m2an/2017029
LA  - en
ID  - M2AN_2017__51_6_2367_0
ER  - 
%0 Journal Article
%A Ignat, Liviu I.
%A Pozo, Alejandro
%T A semi-discrete large-time behavior preserving scheme for the augmented Burgers equation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 2367-2398
%V 51
%N 6
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2017029/
%R 10.1051/m2an/2017029
%G en
%F M2AN_2017__51_6_2367_0
Ignat, Liviu I.; Pozo, Alejandro. A semi-discrete large-time behavior preserving scheme for the augmented Burgers equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2367-2398. doi : 10.1051/m2an/2017029. http://archive.numdam.org/articles/10.1051/m2an/2017029/

J.J. Alonso and M.R. Colonno, Multidisciplinary Optimization with Applications to Sonic-boom Minimization. Ann. Rev. Fluid Mech. 44 (2012) 505–526. | DOI | MR | Zbl

A. Bouharguane and R. Carles, Splitting methods for the nonlocal fowler equation. Math. Comput. 83 (2013) 1121–1141. | DOI | MR | Zbl

Ph. Brenner, V. Thomée and L.B. Wahlbin, Besov spaces and applications to difference methods for initial value problems. In vol. 434 of Lect. Notes Math. Springer Verlag (1975). | MR | Zbl

J.M. Burgers, Application of a model system to illustrate some points of the statistical theory of free turbulence. Proc. R. Netherlands Acad. Sci. 43 (1940) 2–12. | JFM | MR | Zbl

T.W. Carlton and D.T. Blackstock, Propagation of plane waves of finite amplitude in inhomogeneous media with applications to vertical propagation in the ocean. Tech. Report ARL-TR-74-31, Applied Research laboratories, The University of Texas at Austin (1974).

C. Castro, F. Palacios and E. Zuazua, Optimal control and vanishing viscosity for the burgers equation. Integral Methods in Science and Engineering, edited by C. Costanda and M.E. Pérez, vol. 2. Birkhäuser Verlag (2010) 65–90. | MR | Zbl

R.O. Cleveland, Propagation of sonic booms through a real, stratified atmosphere. Ph.D. thesis, University of Texas at Austin (1995).

Ch. Darden, Sonic boom theory: its status in prediction and minimization. J. Aircraft 14 (1977) 569–576. | DOI

J. Duoandikoetxea and E. Zuazua, Moments, masses de dirac et décomposition de fonctions. C. R. Acad. Sci. 315 (1992) 693–698. | MR | Zbl

M. Escobedo and E. Zuazua, Large time behavior for convection-diffusion equations in R n . J. Functional Anal. 100 (1991) 119–161. | DOI | MR | Zbl

V.E. Fridman, Propagation of a strong sound wave in a plane layered medium. Soviet Phys. Acoustics 22 (1976) 349–350.

E. Godlewski and P.-A. Raviart, Hyperbolic systems of conservation laws. Math. Appl. Ellipses (1991). | MR | Zbl

W.D. Hayes, Linearized supersonic flow. Ph.D. thesis, California Institute of Technology, Pasadena, California (1947).

L.I. Ignat, A. Pozo and E. Zuazua, Large-time asymptotics, vanishing viscosity and numerics for 1-D scalar conservation laws, Math. Comput. 84 (2015) 1633–1662. | DOI | MR | Zbl

L.I. Ignat and J.D. Rossi, A nonlocal convection-diffusion equation. J. Functional Anal. 251 (2007) 399–437. | DOI | MR | Zbl

B.F. Jones, A class of singular integrals. Amer. J. Math. 86 (1964) 441–462. | DOI | MR | Zbl

L.B. Jones, Lower bounds for sonic bangs. J. Royal Aeronautical Soc. 65 (1961) 433–436. | DOI

G. Karch and K. Suzuki, Spikes and diffusion waves in one-dimensional model of chemotaxis. Nonlinearity 23 (2010) 3119–3137. | DOI | MR | Zbl

Y.J. Kim and A.E. Tzavaras, Diffusive n-waves and metastability in the burgers equation. SIAM J. Math. Anal. 33 (2001) 607–633. | DOI | MR | Zbl

M.J. Lighthill, Viscosity effects in sound waves of finite amplitude. Surveys in Mechanics, edited by Ge.K. Batchelor and R.M. Davies. Cambridge University Press (1956) 250–351. | MR

T.P. Liu and M. Pierre, Source-solutions and asymptotic behavior in conservation laws. J. Differ. Equ. 51 (1984) 419–441. | DOI | MR | Zbl

A. Loubeau and F. Coulouvrat, Effects of meteorological variability on sonic boom propagation from hypersonic aircraft. AIAA J. 47 (2009) 2632–2641. | DOI

A.D. Pierce, Acoustics: an introduction to its physical principles and applications. Acoustical Soc. Amer. (1989).

A. Pozo, Large-time behavior of some numerical schemes: application to the sonic-boom phenomenon, Ph.D. thesis, Universidad del País Vasco (2014).

S.K. Rallabhandi, Advanced sonic boom prediction using augmented burger’s equation. J. Aircraft 48 (2011) 1245–1253. | DOI

S.K. Rallabhandi, Sonic boom adjoint methodology and its applications, 29th AIAA Applied Aerodynamics Conference. American Institute of Aeronautics and Astronautics (2011).

R. Seebass, Minimum sonic boom shock strengths and overpressures. Nature 221 (1969) 651–653. | DOI

R. Seebass, Sonic boom theory. J. Aircraft 6 (1969) 177–184. | DOI

R. Seebass and A.R. George, Sonic-boom Minimization. J. Acoustical Soc. Amer. 51 (1972) 686–694. | DOI

J. Simon, Compact sets in the space p (0,T;B). Ann. Mat. pura ed Applicata 146 (1987) 65–96. | DOI | MR | Zbl

N.Th. Varopoulos, L. Saloff−Coste and Th. Coulhon, Analysis and geometry on groups. In vol. 100. Cambridge Tracts in Mathematics. Cambridge University Press (1992). | MR | Zbl

L. Véron, Effets régularisants de semi-groupes non linéaires dans des espaces de banach. Ann. fac. Sci. Toulouse 5e Série 1 (1979) 171–200. | DOI | Numdam | MR | Zbl

G.B. Whitham, The flow pattern of a supersonic projectile. Commun. Pure Appl. Math. 5 (1952) 301–348. | DOI | MR | Zbl

Cité par Sources :