A difference scheme for a degenerating convection-diffusion-reaction system modelling continuous sedimentation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 2, pp. 365-392.

Continuously operated settling tanks are used for the gravity separation of solid-liquid suspensions in several industries. Mathematical models of these units form a topic for well-posedness and numerical analysis even in one space dimension due to the spatially discontinuous coefficients of the underlying strongly degenerate parabolic, nonlinear model partial differential equation (PDE). Such a model is extended to describe the sedimentation of multi-component particles that react with several soluble components of the liquid phase. The fundamental balance equations contain the mass percentages of the components of the solid and liquid phases. The equations are reformulated as a system of nonlinear PDEs that can be solved consecutively in each time step by an explicit numerical scheme. This scheme combines a difference scheme for conservation laws with discontinuous flux with an approach of numerical percentage propagation for multi-component flows. The main result is an invariant-region property, which implies that physically relevant numerical solutions are produced. Simulations of denitrification in secondary settling tanks in wastewater treatment illustrate the model and its discretization.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017038
Classification : 35K57, 35K65, 35L65, 35Q35, 35R05
Mots clés : clarifier-thickener, invariant-region property, multi-component flow, percentage propagation, wastewater treatment
Bürger, Raimund 1 ; Diehl, Stefan 1 ; Mejías, Camilo 1

1
@article{M2AN_2018__52_2_365_0,
     author = {B\"urger, Raimund and Diehl, Stefan and Mej{\'\i}as, Camilo},
     title = {A difference scheme for a degenerating convection-diffusion-reaction system modelling continuous sedimentation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {365--392},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {2},
     year = {2018},
     doi = {10.1051/m2an/2017038},
     zbl = {1412.65068},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2017038/}
}
TY  - JOUR
AU  - Bürger, Raimund
AU  - Diehl, Stefan
AU  - Mejías, Camilo
TI  - A difference scheme for a degenerating convection-diffusion-reaction system modelling continuous sedimentation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 365
EP  - 392
VL  - 52
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2017038/
DO  - 10.1051/m2an/2017038
LA  - en
ID  - M2AN_2018__52_2_365_0
ER  - 
%0 Journal Article
%A Bürger, Raimund
%A Diehl, Stefan
%A Mejías, Camilo
%T A difference scheme for a degenerating convection-diffusion-reaction system modelling continuous sedimentation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 365-392
%V 52
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2017038/
%R 10.1051/m2an/2017038
%G en
%F M2AN_2018__52_2_365_0
Bürger, Raimund; Diehl, Stefan; Mejías, Camilo. A difference scheme for a degenerating convection-diffusion-reaction system modelling continuous sedimentation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 2, pp. 365-392. doi : 10.1051/m2an/2017038. http://archive.numdam.org/articles/10.1051/m2an/2017038/

[1] R. Adimurthi, Dutta, G.D. Veerappa Gowda and J. Jaffré, Monotone (A, B) entropy stable numerical scheme for scalar conservation laws with discontinuous flux. ESAIM: M2AN 48 (2014) 1725–1755 | DOI | MR | Zbl

[2] J. Alex, S.G.E. Rönner–Holm, M. Hunze and N. C. Holm, A combined hydraulic and biological SBR model. Wat. Sci. Tech. 64 (2011) 1025–1031 | DOI

[3] T. Arbogast, C.-S. Huang and T.F. Russell, A locally conservative Eulerian–Lagrangian method for a model two-phase flow problem in a one-dimensional porous medium. SIAM J. Sci. Comput. 34 (2012) A1950–A1974 | DOI | MR | Zbl

[4] J. Balbás and G. Hernández-Duenas A positivity preserving central scheme for shallow water flows in channels with wet-dry states. ESAIM: M2AN 48 (2014) 665–696 | DOI | Numdam | MR | Zbl

[5] O. Bernard, A.-C. Boulanger, M.-O. Bristeau and J. Sainte-Marie, A 2d model for hydrodynamics and biology coupling applied to algae growth simulations. ESAIM: M2AN 47 (2013) 1387–1412 | DOI | Numdam | MR | Zbl

[6] S. Borazjani, A.J. Roberts and P. Bedrikovetsky, Splitting in systems of PDEs for two-phase multicomponent flow in porous media. Appl. Math. Letters 53 (2016) 25–32 | DOI | MR | Zbl

[7] R. Bürger, J. Careaga, S. Diehl, C. Mejías, I. Nopens and P.A. Vanrolleghem, Simulations of reactive settling of activated sludge with a reduced biokinetic model. Comput. Chem. Eng. 92 (2016) 216–229 | DOI

[8] R. Bürger, A. Coronel and M. Sepúlveda, A semi-implicit monotone difference scheme for an initial-boundary value problem of a strongly degenerate parabolic equation modeling sedimentation-consolidation processes. Math. Comput. 75 (2006) 91–112 | DOI | MR | Zbl

[9] R. Bürger, S. Diehl, S. Farås, I. Nopens and E. Torfs, A consistent modelling methodology for secondary settling tanks: A reliable numerical method. Water Sci. Tech. 68 (2013) 192–208 | DOI

[10] R. Bürger, S. Diehl and I. Nopens, A consistent modelling methodology for secondary settling tanks in wastewater treatment. Water Res. 45 (2011) 2247–2260 | DOI

[11] R. Bürger, K.H. Karlsen, N.H. Risebro and J.D. Towers, Well-posedness in BVt and convergence of a difference scheme for continuous sedimentation in ideal clarifier-thickener units. Numer. Math. 97 (2004) 25–65 | DOI | MR | Zbl

[12] R. Bürger, K.H. Karlsen and J.D. Towers, A model of continuous sedimentation of flocculated suspensions in clarifier-thickener units. SIAM J. Appl. Math. 65 (2005) 882–940 | DOI | MR | Zbl

[13] R. Bürger, R. Ruiz, K. Schneider and M. Sepúlveda, Fully adaptive multiresolution schemes for strongly degenerate parabolicequations in one space dimension. ESAIM: Math. Modell. Num. Anal. 42 (2008) 535–563 | DOI | Numdam | MR | Zbl

[14] S. Diehl,On scalar conservation laws with point source and discontinuous flux function. SIAM J. Math. Anal. 26 (1995) 1425–1451 | DOI | MR | Zbl

[15] S. Diehl, A conservation law with point source and discontinuous flux function modelling continuous sedimentation. SIAM J. Appl. Math. 56 (1996) 388–419 | DOI | MR | Zbl

[16] S. Diehl, Continuous sedimentation of multi-component particles. Math. Meth. Appl. Sci. 20 (1997) 1345–1364 | DOI | MR | Zbl

[17] S. Diehl,A uniqueness condition for nonlinear convection-diffusion equations with discontinuous coefficients. J. Hyperbolic Diff. Equ. 6 (2009) 127–159 | DOI | MR | Zbl

[18] D.A. Drew and S.L. Passman. Theory of Multicomponent Fluids, volume 135, Springer-Verlag, New York (1999) | DOI | MR | Zbl

[19] X. Flores-Alsina, K.V. Gernaey and U. Jeppsson, Benchmarking biological nutrient removal in wastewater treatment plants: Influence of mathematical model assumptions. Water Sci. Tech. 65 (2012) 1496–1505 | DOI

[20] K.V. Gernaey, U. Jeppsson, D.J. Batstone and P. Ingildsen, Impact of reactive settler models on simulated WWTP performance. Water Sci. Tech. 53 (2006) 159–167 | DOI

[21] T. Gimse and N.H. Risebro, Solution of the Cauchy problem for a conservation law with a discontinuous flux function. SIAM J. Math. Anal. 23 (1992) 635–648 | DOI | MR | Zbl

[22] J.M.N.T. Gray and C. Ancey, Multi-component particle-size segregation in shallow granular avalanches. J. Fluid Mech. 678 (2011) 535–588 | DOI | Zbl

[23] J. Guerrero, X. Flores-Alsina, A. Guisasola, J.A. Baeza and K.V. Gernaey, Effect of nitrite, limited reactive settler and plant design configuration on the predicted performance of simultaneous C/N/P removal WWTPs. Bioresource Tech. 136 (2013) 680–688 | DOI

[24] J. Hamilton, R. Jain, P. Antoniou, S.A. Svoronos, B. Koopman and G. Lyberatos, Modeling and pilot-scale experimental verification for predenitrification process. J. Environ. Eng. 118 (1992) 38–55 | DOI

[25] S. Jaouen and F. Lagoutière, Numerical transport of an arbitrary number of components. Computer Methods Appl. Mech. Eng. 196 (2007) 3127–3140 | DOI | MR | Zbl

[26] K.H. Karlsen and N.H. Risebro, On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients. Discrete Continuous Dynamical Syst. 9 (2003) 1081–1104 | DOI | MR | Zbl

[27] K.H. Karlsen, N.H. Risebro and E.B. Storrøsten, On the convergence rate of finite difference methods for degenerate convection-diffusion equations in several space dimensions. ESAIM: M2AN 50 (2016) 499–539 | DOI | Numdam | MR | Zbl

[28] K.H. Karlsen, N.H. Risebro and J.D. Towers, Upwind difference approximations for degenerate parabolic convection-diffusion equations with a discontinuous coefficient. IMA J. Numer. Anal. 22 (2002) 623–664 | DOI | MR | Zbl

[29] K.H. Karlsen, N.H. Risebro and J.D. TowersL1 stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients. Trans. Royal Norwegian Society Sci. Letters (Skr. K. Nor. Vidensk. Selsk.) 3 (2003) 49 | MR | Zbl

[30] B. Li and M.K. Stenstrom, Practical identifiability and uncertainty analysis of the one-dimensional hindered-compression continuous settling model. Water Res. 90 (2016) 235–246

[31] Z. Li, R. Qi, B. Wang, Z. Zou, G. Wei and M. Yang, Cost-performance analysis of nutrient removal in a full-scale oxidation ditch process based on kinetic modeling. J. Environ. Sci. 25 (2013) 26–32 | DOI

[32] G.S. Ostace, V.M. Cristea and P.S. Agachi, Evaluation of different control strategies of the waste water treatment plant based on a modified activated sludge model no. 3. Environ. Eng. Manag. J. 11 (2012) 147–164 | DOI

[33] B. Parent, Positivity-preserving high-resolution schemes for systems of conservation laws. J. Comp. Phys. 231 (2012) 173–189 | DOI | MR | Zbl

[34] V.V. Shelukhin, Quasistationary sedimentation with adsorption. J. Appl. Mech. Tech. Phys. 46 (2005) 513–522 | DOI | MR | Zbl

[35] L. Svarovsky, Countercurrent washing of solids, Edited by Ladislav Svarovsky. In: Solid-Liquid Separation, chap. 15. Butterworth Heinemann, Oxford, 4th edition (2001), 442–475. | DOI

[36] E. Torfs, T. Maere, R. Bürger, S. Diehl and I. Nopens, Impact on sludge inventory and control strategies using the benchmark simulation model no. 1 with the Bürger-Diehl settler model. Water Sci. Tech. 71 (2015) 1524–1535 | DOI

Cité par Sources :