High-order filtered schemes for time-dependent second order HJB equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 1, pp. 69-97.

In this paper, we present and analyse a class of “filtered” numerical schemes for second order Hamilton–Jacobi–Bellman (HJB) equations. Our approach follows the ideas recently introduced in B.D. Froese and A.M. Oberman, Convergent filtered schemes for the Monge-Ampère partial differential equation, SIAM J. Numer. Anal. 51 (2013) 423–444, and more recently applied by other authors to stationary or time-dependent first order Hamilton–Jacobi equations. For high order approximation schemes (where “high” stands for greater than one), the inevitable loss of monotonicity prevents the use of the classical theoretical results for convergence to viscosity solutions. The work introduces a suitable local modification of these schemes by “filtering” them with a monotone scheme, such that they can be proven convergent and still show an overall high order behaviour for smooth enough solutions. We give theoretical proofs of these claims and illustrate the behaviour with numerical tests from mathematical finance, focussing also on the use of backward differencing formulae for constructing the high order schemes.

DOI : 10.1051/m2an/2017039
Classification : 65M06, 65M12, 35K10, 35K55
Mots-clés : Monotone schemes, high-order schemes, backward difference formulae, viscosity solutions, second order Hamilton–Jacobi–Bellman equations
Bokanowski, Olivier 1 ; Picarelli, Athena 1 ; Reisinger, Christoph 1

1
@article{M2AN_2018__52_1_69_0,
     author = {Bokanowski, Olivier and Picarelli, Athena and Reisinger, Christoph},
     title = {High-order filtered schemes for time-dependent second order {HJB} equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {69--97},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {1},
     year = {2018},
     doi = {10.1051/m2an/2017039},
     zbl = {1395.65012},
     mrnumber = {3808153},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2017039/}
}
TY  - JOUR
AU  - Bokanowski, Olivier
AU  - Picarelli, Athena
AU  - Reisinger, Christoph
TI  - High-order filtered schemes for time-dependent second order HJB equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 69
EP  - 97
VL  - 52
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2017039/
DO  - 10.1051/m2an/2017039
LA  - en
ID  - M2AN_2018__52_1_69_0
ER  - 
%0 Journal Article
%A Bokanowski, Olivier
%A Picarelli, Athena
%A Reisinger, Christoph
%T High-order filtered schemes for time-dependent second order HJB equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 69-97
%V 52
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2017039/
%R 10.1051/m2an/2017039
%G en
%F M2AN_2018__52_1_69_0
Bokanowski, Olivier; Picarelli, Athena; Reisinger, Christoph. High-order filtered schemes for time-dependent second order HJB equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 1, pp. 69-97. doi : 10.1051/m2an/2017039. http://archive.numdam.org/articles/10.1051/m2an/2017039/

[1] M. Assellaou, O. Bokanowski, and H. Zidani, Error estimates for second order Hamilton-Jacobi-Bellman equations. Approximation of probabilistic reachable sets. Discrete Contin. Dyn. Syst. 35 (2015) 3933–3964 | DOI | MR | Zbl

[2] S. Augoula and R. Abgrall, High order numerical discretization for Hamilton-Jacobi equations on triangular meshes. J. Sci. Comput. 15 (2000) 197–229 | DOI | MR | Zbl

[3] G. Barles and E.R. Jakobsen, On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations. ESAIM: M2AN 36 (2002) 33–54 | DOI | Numdam | MR | Zbl

[4] G. Barles and E.R. Jakobsen, Error bounds for monotone approximation schemes for Hamilton-Jacobi-Bellman equations. SIAM J. Numer. Anal. 43 (2005) 540–558 | DOI | MR | Zbl

[5] G. Barles and E.R. Jakobsen, Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equations. Math. Comput. 74 (2007) 1861–1893 | DOI | MR | Zbl

[6] G. Barles and P.E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations. Asymp. Anal. 4 (1991) 271–283 | MR | Zbl

[7] T. Beale, Smoothing properties of implicit finite difference methods for a diffusion equation in maximum norm. SIAM J. Numer. Anal. 47 (2009) 2476–2495 | DOI | MR | Zbl

[8] J.-D. Benamou, F. Collino, and J.-M. Mirebeau, Monotone and consistent discretization of the Monge-Ampère operator. Math. Comput. 85 (2016) 2743–2775 | DOI | MR | Zbl

[9] O. Bokanowski and K. Debrabant, High order finite difference schemes for some nonlinear diffusion equations with an obstacle term. Preprint (2016)

[10] O. Bokanowski, M. Falcone, R. Ferretti, D. Kalise, L. Grüne, and H. Zidani, Value iteration convergence of ϵ-monotone schemes for stationary Hamilton–Jacobi equations. Discrete and Continuous Dynamical Systems – Serie A 35 (2015) 4041–4070 | DOI | MR | Zbl

[11] O. Bokanowski, M. Falcone, and S. Sahu, An efficient filtered scheme for some first order Hamilton-Jacobi-Bellman equations. SIAM J. Sci. Comput. 38 (2015) A171–A195 | MR | Zbl

[12] O. Bokanowski, S. Maroso, and H. Zidani, Some convergence results for Howard’s algorithm. SIAM J. Num. Anal. 47 (2009) 3001–3026 | DOI | MR | Zbl

[13] J.F. Bonnans, E. Ottenwaelter, and H. Zidani, Numerical schemes for the two dimensional second-order HJB equation. ESAIM: M2AN 38 (2004) 723–735 | Numdam | Zbl

[14] J.F. Bonnans and H. Zidani, Consistency of generalized finite difference schemes for the stochastic HJB equation. SIAM J. Numer. Anal. 41 (2003) 1008–1021 | DOI | MR | Zbl

[15] F. Camilli and M. Falcone, An approximation scheme for the optimal control of diffusion processes. RAIRO: M2AN 29 (1995) 97–122 | Numdam | MR | Zbl

[16] M.G. Crandall, H. Ishii, and P.L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27 (1992) 1–67 | DOI | MR | Zbl

[17] M.G. Crandall and P.-L. Lions, Convergent difference schemes for nonlinear parabolic equations and mean curvature motion. Numer. Math. 75 (1996) 17–41 | DOI | MR | Zbl

[18] K. Debrabant and E. R Jakobsen, Semi-Lagrangian schemes for linear and fully non-linear diffusion equations. Math. Comput. 82 (2013) 1433–1462 | DOI | MR | Zbl

[19] X. Feng,C.-Y. Kao, and T. Lewis, Convergent finite difference methods for one-dimensional fully nonlinear second order partial differential equations. J. Comput. Appl. Math. 254 (2015) 81–98 | DOI | MR | Zbl

[20] P.A. Forsyth and G. Labahn, Numerical methods for controlled Hamilton–Jacobi–Bellman PDEs in finance. J. Comput. Finance 11 (2007) 1–44 | DOI

[21] B.D. Froese and A.M. Oberman, Convergent filtered schemes for the Monge-Ampère partial differential equation. SIAM J. Numer. Anal. 51 (2013) 423–444 | DOI | MR | Zbl

[22] S.K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Mat. Sbornik 89 (1959) 271–306 | MR | Zbl

[23] M. Jensen and I. Smears, On the convergence of finite element methods for Hamilton–Jacobi–Bellman equations. SIAM J. Numer. Anal. 51 (2013) 137–162 | DOI | MR | Zbl

[24] M. Kocan, Approximation of viscosity solutions of elliptic partial differential equations on minimal grids. Numer. Math. 72 (1995) 73–92 | DOI | MR | Zbl

[25] N.V. Krylov, On the rate of convergence of finite-difference approximations for Bellman’s equations. St. Petersburg Math. J. 9 (1997) 639–650 | MR | Zbl

[26] N.V. Krylov, On the rate of convergence of finite-difference approximations for Bellman’s equations with variable coefficients. Probab. Theory Relat. Fields 117 (2000) 1–16 | DOI | MR | Zbl

[27] H.J. Kushner and P.G. Dupuis, Numerical methods for stochastic control problems in continuous time, Vol. 24. Springer (2013) | MR | Zbl

[28] R.J. Leveque. Numerical methods for conservation laws. Springer Science & Business Media, 1992 | MR | Zbl

[29] D. Li and W.-L. Ng, Optimal dynamic portfolio selection: multiperiod mean variance formulation. Math. Finance 10 (2000) 387–406 | DOI | MR | Zbl

[30] T. Lyons, Uncertain volatility and the risk-free synthesis of derivatives. Appl. Math. Finance 2 (1995) 117–133 | DOI | Zbl

[31] K. Ma and P.A. Forsyth, An unconditionally monotone numerical scheme for the two factor uncertain volatility model. IMA J. Numer. Anal. 37 (2017) 905–944 | MR | Zbl

[32] J.L. Menaldi, Some estimates for finite difference approximations. SIAM J. Control Optim. 27 (1989) 579–607 | DOI | MR | Zbl

[33] J.-M. Mirebeau, Minimal stencils for discretizations of anisotropic pdes preserving causality or the maximum principle. SIAM J. Numer. Anal. 54 (2016) 1582–1611 | DOI | MR | Zbl

[34] A.M. Oberman, Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton–jacobi equations and free boundary problems. SIAM J. Numer. Anal. 44 (2006) 879–895 | DOI | MR | Zbl

[35] A.M. Oberman and T. Salvador, Filtered schemes for Hamilton-Jacobi equations: A simple construction of convergent accurate differenceschemes. J. Comput. Phys. 284 (2015) 367–388 | DOI | MR | Zbl

[36] C.W. Oosterlee, On multigrid for linear complementarity problems with application to American-style options. Electronic Trans. Numer. Anal. 15 (2003) 165–185 | MR | Zbl

[37] D.M. Pooley, P.A. Forsyth, and K.R. Vetzal, Numerical convergence properties of option pricing PDEs with uncertain volatility. IMA J. Numer. Anal. 23 (2003) 241–267 | DOI | MR | Zbl

[38] C. Reisinger, The non-locality of Markov chain approximations to two-dimensional diffusions. Math. Comput. Simul. 143 (2016) 176–185 | DOI | MR | Zbl

[39] C. Reisinger and P.A. Forsyth, Piecewise constant policy approximations to Hamilton–Jacobi–Bellman equations. Appl. Numer. Math. 103 (2016) 27–47 | DOI | MR | Zbl

[40] I. Smears and E. Süli, Discontinuous Galerkin finite element methods for time-dependent Hamilton–Jacobi–Bellman equationswith Cordes coefficients. Numer. Math. 133 (2016) 141–176 | DOI | MR | Zbl

[41] S.P. van der Pijl and C.W. Oosterlee, An ENO-based method for second-order equations and application to the control of dike levels. J. Sci. Comput. 49 (2012) 462–492 | MR | Zbl

[42] J.M. Varah, A lower bound for the smallest singular value of a matrix. Linear Algebr. Appl. 11 (1975) 3–5 | DOI | MR | Zbl

[43] J. Wang and P.A. Forsyth, Numerical solution of the Hamilton-Jacobi-Bellman formulation for continuous time mean variance asset allocation. J. Econom. Dyn. Control 34 (2010) 207–230 | DOI | MR | Zbl

[44] X. Zhou and D. Li, Continuous time mean variance portfolio selection: A stochastic LQ framework. Appl. Math. Optimiz. 42 (2000) 19–33 | DOI | MR | Zbl

Cité par Sources :