Inhomogeneous steady-state problem of complex heat transfer
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2511-2519.

An inhomogeneous steady-state problem of radiative-conductive heat transfer in a three-dimensional domain is studied in the framework of the P 1 approximation of the nonlinear complex heat transfer model. The unique solvability of the problem is proved. The Lyapunov stability of solutions is shown.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017042
Classification : 35J65, 80A20
Mots-clés : Radiative heat transfer, diffusion approximation, unique solvability, Lyapunov stability
Chebotarev, Alexander Yu. 1, 2 ; Grenkin, Gleb V. 1, 2 ; Kovtanyuk, Andrey E. 1, 2

1 Far Eastern Federal University, Sukhanova st. 8, 690950, Vladivostok, Russia.
2 Institute for Applied Mathematics FEB RAS, Radio st. 7, 690041, Vladivostok, Russia.
@article{M2AN_2017__51_6_2511_0,
     author = {Chebotarev, Alexander Yu. and Grenkin, Gleb V. and Kovtanyuk, Andrey E.},
     title = {Inhomogeneous steady-state problem of complex heat transfer},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2511--2519},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {6},
     year = {2017},
     doi = {10.1051/m2an/2017042},
     mrnumber = {3745180},
     zbl = {1387.35122},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2017042/}
}
TY  - JOUR
AU  - Chebotarev, Alexander Yu.
AU  - Grenkin, Gleb V.
AU  - Kovtanyuk, Andrey E.
TI  - Inhomogeneous steady-state problem of complex heat transfer
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 2511
EP  - 2519
VL  - 51
IS  - 6
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2017042/
DO  - 10.1051/m2an/2017042
LA  - en
ID  - M2AN_2017__51_6_2511_0
ER  - 
%0 Journal Article
%A Chebotarev, Alexander Yu.
%A Grenkin, Gleb V.
%A Kovtanyuk, Andrey E.
%T Inhomogeneous steady-state problem of complex heat transfer
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 2511-2519
%V 51
%N 6
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2017042/
%R 10.1051/m2an/2017042
%G en
%F M2AN_2017__51_6_2511_0
Chebotarev, Alexander Yu.; Grenkin, Gleb V.; Kovtanyuk, Andrey E. Inhomogeneous steady-state problem of complex heat transfer. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2511-2519. doi : 10.1051/m2an/2017042. http://archive.numdam.org/articles/10.1051/m2an/2017042/

M.F. Modest, Radiative Heat Transfer. Academic Press (2003).

G. Thömmes, R. Pinnau, M. Seaïd, T. Götz and A. Klar, Numerical methods and optimal control for glass cooling processes. Trans. Theory Stat. Phys. 31 (2002) 513–529. | DOI | MR | Zbl

R. Backofen, T. Bilz, A. Ribalta and A. Voigt, SP N -approximations of internal radiation in crystal growth of optical materials. J. Cryst. Growth 266 (2004) 264–270. | DOI

A. Klar, J. Lang and M. Seaïd, Adaptive solution of SP N -approximations to radiative heat transfer in glass. Int. J. Therm. Sci. 44 (2005) 1013–1023. | DOI

M. Frank, A. Klar and R. Pinnau, Optimal control of glass cooling using simplified P N theory. Transport Theory Statist. Phys. 39 (2010) 282–311. | DOI | MR | Zbl

D. Clever and J. Lang, Optimal control of radiative heat transfer in glass cooling with restrictions on the temperature gradient. Optimal Control Appl. Methods 33 (2012) 157–175. | DOI | MR | Zbl

G.V. Grenkin and A.Yu. Chebotarev, A nonstationary problem of complex heat transfer. Comput. Math. Math. Phys. 54 (2014) 1737–1747. | DOI | MR | Zbl

R. Pinnau, Analysis of optimal boundary control for radiative heat transfer modelled by the SP 1 -system. Commun. Math. Sci. 5 (2007) 951–969. | DOI | MR | Zbl

O. Tse and R. Pinnau, Optimal control of a simplified natural convection-radiation model. Commun. Math. Sci. 11 (2013) 679–707. | DOI | MR | Zbl

G.V. Grenkin and A.Yu. Chebotarev, A nonhomogeneous nonstationary complex heat transfer problem. Sib. Èlektron. Mat. Izv. 12 (2015) 562–576. | MR | Zbl

C.T. Kelley, Existence and uniqueness of solutions of nonlinear systems of conductive-radiative heat transfer equations. Trans. Theory Stat. Phys. 25 (1996) 249–260. | DOI | MR | Zbl

A.E. Kovtanyuk and A.Yu. Chebotarev, An iterative method for solving a complex heat transfer problem. Appl. Math. Comput. 219 (2013) 9356–9362. | MR | Zbl

A.E. Kovtanyuk and A.Yu. Chebotarev, Steady-state problem of complex heat transfer. Comput. Math. Math. Phys. 54 (2014) 719–726. | DOI | MR | Zbl

A.E. Kovtanyuk and A.Yu. Chebotarev, Stationary free convection problem with radiative heat exchange. Differ. Equ. 50 (2014) 1592–1599. | DOI | MR | Zbl

A.E. Kovtanyuk, A.Yu. Chebotarev, N.D. Botkin and K.-H. Hoffmann, Theoretical analysis of an optimal control problem of conductive-convective-radiative heat transfer. J. Math. Anal. Appl. 412 (2014) 520–528. | DOI | MR | Zbl

A.E. Kovtanyuk, A.Yu. Chebotarev, N.D. Botkin and K.-H. Hoffmann, Solvability of P 1 approximation of a conductive-radiative heat transfer problem. Appl. Math. Comput. 249 (2014) 247–252. | MR

A.E. Kovtanyuk, A.Yu. Chebotarev, N.D. Botkin and K.-H. Hoffmann, Unique solvability of a steady-state complex heat transfer model. Commun. Nonlin. Sci. Numer. Simul. 20 (2015) 776–784. | DOI | MR | Zbl

G.V. Grenkin, A.Yu. Chebotarev, A.E. Kovtanyuk, N.D. Botkin and K.-H. Hoffmann, Boundary optimal control problem of complex heat transfer model. J. Math. Anal. Appl. 433 (2016) 1243–1260. | DOI | MR | Zbl

M. Frank, A. Klar, E.W. Larsen and S. Yasuda, Time-dependent simplified PN approximation to the equations of radiative transfer. J. Comput. Phys. 226 (2007) 2289–2305. | DOI | MR | Zbl

E. Zeidler, Nonlinear functional analysis and its applications. II/A: Linear monotone operators. Springer, New York (1990). | Zbl

Cité par Sources :