Finite element approximation of an incompressible chemically reacting non-Newtonian fluid
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 2, pp. 509-541.

We consider a system of nonlinear partial differential equations modelling the steady motion of an incompressible non-Newtonian fluid, which is chemically reacting. The governing system consists of a steady convection-diffusion equation for the concentration and the generalized steady Navier–Stokes equations, where the viscosity coefficient is a power-law type function of the shear-rate, and the coupling between the equations results from the concentration-dependence of the power-law index. This system of nonlinear partial differential equations arises in mathematical models of the synovial fluid found in the cavities of moving joints. We construct a finite element approximation of the model and perform the mathematical analysis of the numerical method in the case of two space dimensions. Key technical tools include discrete counterparts of the Bogovskiĭ operator, De Giorgi’s regularity theorem in two dimensions, and the Acerbi–Fusco Lipschitz truncation of Sobolev functions, in function spaces with variable integrability exponents.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017043
Classification : 65N30, 74S05, 76A05
Mots-clés : Non-Newtonian fluid, variable power-law index, synovial fluid, finite element method
Ko, Seungchan 1 ; Pustějovská, Petra 1 ; Süli, Endre 1

1
@article{M2AN_2018__52_2_509_0,
     author = {Ko, Seungchan and Pust\v{e}jovsk\'a, Petra and S\"uli, Endre},
     title = {Finite element approximation of an incompressible chemically reacting {non-Newtonian} fluid},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {509--541},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {2},
     year = {2018},
     doi = {10.1051/m2an/2017043},
     zbl = {1404.65270},
     mrnumber = {3834434},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2017043/}
}
TY  - JOUR
AU  - Ko, Seungchan
AU  - Pustějovská, Petra
AU  - Süli, Endre
TI  - Finite element approximation of an incompressible chemically reacting non-Newtonian fluid
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 509
EP  - 541
VL  - 52
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2017043/
DO  - 10.1051/m2an/2017043
LA  - en
ID  - M2AN_2018__52_2_509_0
ER  - 
%0 Journal Article
%A Ko, Seungchan
%A Pustějovská, Petra
%A Süli, Endre
%T Finite element approximation of an incompressible chemically reacting non-Newtonian fluid
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 509-541
%V 52
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2017043/
%R 10.1051/m2an/2017043
%G en
%F M2AN_2018__52_2_509_0
Ko, Seungchan; Pustějovská, Petra; Süli, Endre. Finite element approximation of an incompressible chemically reacting non-Newtonian fluid. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 2, pp. 509-541. doi : 10.1051/m2an/2017043. http://archive.numdam.org/articles/10.1051/m2an/2017043/

[1] E. Acerbi and N. Fusco, An approximation lemma for W1,p functions. In Material instabilities in continuum mechanics (Edinburgh, 1985–1986), Oxford Sci. Publ., Oxford Univ. Press, New York (1988) 1–5 | MR | Zbl

[2] N.E. Aguilera and L.A. Caffarelli, Regularity results for discrete solutions of second order elliptic problems in the finite element method. Calcolo 23 (1986) 327–353 (1987) | DOI | MR | Zbl

[3] L. Belenki, L.C. Berselli, L. Diening and M. Ružička, On the finite element approximation of p-Stokes systems. SIAM J. Numer. Anal. 50 (2012) 373–397 | DOI | MR | Zbl

[4] L.C. Berselli, D. Breit and L. Diening, Convergence analysis for a finite element approximation of a steady model for electrorheological fluids. Numer. Math. 132 (2016) 657–689 | DOI | MR | Zbl

[5] S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods, volume 15 of Texts in Applied Mathematics. Springer, New York, 3rd edition (2008) | DOI | MR | Zbl

[6] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, volume 15 of Springer Series in Computational Mathematics. Springer Verlag, New York (1991) | MR | Zbl

[7] M. Bulíček, J. Málek and K.R. Rajagopal, Mathematical results concerning unsteady flows of chemically reacting incompressible fluids. In Partial differential equations and fluid mechanics, volume 364 of London Math. Soc. Lect. Note Ser., Cambridge Univ. Press, Cambridge (2009) 26–53 | MR | Zbl

[8] M. Bulíček and P. Pustějovská, On existence analysis of steady flows of generalized Newtonian fluids with concentration dependent power-law index. J. Math. Anal. Appl. 402 (2013) 157–166 | DOI | MR | Zbl

[9] M. Bulíček and P. Pustějovská, Existence analysis for a model describing flow of an incompressible chemically reacting non-Newtonian fluid. SIAM J. Math. Anal. 46 (2014) 3223–3240 | DOI | MR | Zbl

[10] J. Casado-Díaz, T. Chacón Rebollo, V. Girault, M. Gómez Mármol and F. Murat, Finite elements approximation of second order linear elliptic equations in divergence form with right-hand side in L1. Numer. Math. 105 (2007) 337–374 | DOI | MR | Zbl

[11] D. Cruz-Uribe, A. Fiorenza and C.J. Neugebauer, The maximal function on variable Lp spaces. Ann. Acad. Sci. Fenn. Math. 28 (2003) 223–238 | MR | Zbl

[12] M. Dauge, Neumann and mixed problems on curvilinear polyhedra. Integral Equ. Oper. Theory 15 (1992) 227–261 | DOI | MR | Zbl

[13] L. Diening, P. Harjulehto, P. Hästö and M. Ružička, Lebesgue and Sobolev spaces with variable exponents, volume 2017 of Lect. Notes Math. Springer, Heidelberg (2011) | DOI | MR | Zbl

[14] L. Diening, C. Kreuzer and E. Süli, Finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology. SIAM J. Numer. Anal. 51 (2013) 984–1015 | DOI | MR | Zbl

[15] L. Diening, J. Málek and M. Steinhauer, On Lipschitz truncations of Sobolev functions (with variable exponent) and their selected applications. ESAIM Control Optimiz. Calc. Var. 14 (2008) 211–232 | DOI | Numdam | MR | Zbl

[16] L. Diening and S. Schwarzacher, On the key estimate for variable exponent spaces. Azerb. J. Math. 3 (2013) 62–69 | MR | Zbl

[17] J.C.M. Duque, R.M.P. Almeida and S.N. Antontsev, Convergence of the finite element method for the porous media equation with variable exponent. SIAM J. Numer. Anal. 51 (2013) 3483–3504 | DOI | MR | Zbl

[18] P. Grisvard, Behavior of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain. In: Numerical Solution of Partial Differential Equations, III (Proc. Third Sympos. (SYNSPADE), Univ. Maryland, College Park, Md. 1975). Edited by B. Hubbard (1976) 207–274 | DOI | MR | Zbl

[19] J. Hron, J. Málek, P. Pustějovská and K.R. Rajagopal, On the modeling of the synovial fluid. Advances in Tribology (2010)

[20] M. Izuki, E. Nakai and Y. Sawano, Hardy spaces with variable exponent. In Harmonic analysis and nonlinear partial differential equations. RIMS Kôkyûroku Bessatsu. Res. Inst. Math. Sci. (RIMS). Kyoto B42 (2013) 109–136 | MR | Zbl

[21] S. Ko, P. Pustějovská and E. Süli, Finite element approximation of an incompressible chemically reacting non-Newtonian fluid. [math.NA] (2017) | arXiv | MR

[22] S. Ko and E. Süli, Finite element approximation of steady flows of generalized Newtonian fluids with concentration-dependent power-law index. [math.NA] (2017) | arXiv | MR

[23] S. Lai, W. Kuei and V. Mow, Rheological equations for synovial fluids. J. Biomech. Eng. 100 (1978) 169–186 | DOI

[24] E.J. Mcshane, Extension of range of functions. Trudy Mat. Inst. Steklov. 40 (1934) 837–842 | JFM | MR | Zbl

[25] P. Pustějovská, Biochemical and mechanical processes in synovial fluid – modeling, analysis and computational simulations. Ph.D. Thesis. Charles University in Prague and Heidelberg University (2012). Available electronically from the URL: https://www-m2.ma.tum.de/foswiki/pub/M2/Allgemeines/PetraPustejovska/PhD˙pustejovska.pdf. | Zbl

[26] M. Ružička, Modeling, mathematical and numerical analysis of electrorheological fluids. Appl. Math. 49 (2004) 565–609 | DOI | MR | Zbl

Cité par Sources :