Spectral methods for Langevin dynamics and associated error estimates
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 3, pp. 1051-1083.

We prove the consistency of Galerkin methods to solve Poisson equations where the differential operator under consideration is hypocoercive. We show in particular how the hypocoercive nature of the generator associated with Langevin dynamics can be used at the discrete level to first prove the invertibility of the rigidity matrix, and next provide error bounds on the approximation of the solution of the Poisson equation. We present general convergence results in an abstract setting, as well as explicit convergence rates for a simple example discretized using a tensor basis. Our theoretical findings are illustrated by numerical simulations.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017044
Classification : 82C31, 35H10, 65N15, 65N35
Mots-clés : Langevin dynamics, spectral methods, Poisson equation, error estimates.
Roussel, Julien 1 ; Stoltz, Gabriel 1

1
@article{M2AN_2018__52_3_1051_0,
     author = {Roussel, Julien and Stoltz, Gabriel},
     title = {Spectral methods for {Langevin} dynamics and associated error estimates},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1051--1083},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {3},
     year = {2018},
     doi = {10.1051/m2an/2017044},
     mrnumber = {3865558},
     zbl = {1404.82050},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2017044/}
}
TY  - JOUR
AU  - Roussel, Julien
AU  - Stoltz, Gabriel
TI  - Spectral methods for Langevin dynamics and associated error estimates
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 1051
EP  - 1083
VL  - 52
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2017044/
DO  - 10.1051/m2an/2017044
LA  - en
ID  - M2AN_2018__52_3_1051_0
ER  - 
%0 Journal Article
%A Roussel, Julien
%A Stoltz, Gabriel
%T Spectral methods for Langevin dynamics and associated error estimates
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 1051-1083
%V 52
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2017044/
%R 10.1051/m2an/2017044
%G en
%F M2AN_2018__52_3_1051_0
Roussel, Julien; Stoltz, Gabriel. Spectral methods for Langevin dynamics and associated error estimates. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 3, pp. 1051-1083. doi : 10.1051/m2an/2017044. http://archive.numdam.org/articles/10.1051/m2an/2017044/

[1] A. Abdulle, G.A. Pavliotis and U. Vaes, Spectral methods for multiscale stochastic differential equations. SIAM/ASA J. Uncertain. Quantif. 5 (2017) 720–761. | DOI | MR | Zbl

[2] M. Allen and D. Tildesley, Computer Simulation of Liquids. Oxford Science Publications (1987). | Zbl

[3] D. Bakry, F. Barthe, P. Cattiaux and A. Guillin, A simple proof of the Poincaré inequality for a large class of probability measures including the log-concave case. Electron. Commun. Probab. 13 (2008) 60–66. | DOI | MR | Zbl

[4] R. Balian, From Microphysics to Macrophysics: Methods and Applications of Statistical Physics, Vol. 1 and 2. Springer (2007). | MR | Zbl

[5] W. Beckner, A generalized Poincaré inequality for Gaussian measures. Proc. Am. Math. Soc. 105 (1989) 397–400. | MR | Zbl

[6] F. Chatelin, Spectral Approximation of Linear Operators. Vol. 65 of Classics in Applied Mathematics. SIAM (2011). | MR | Zbl

[7] J. Dolbeault, C. Mouhot and C. Schmeiser, Hypocoercivity for kinetic equations with linear relaxation terms. C. R. Math. Acad. Sci. Paris 347 (2009) 511–516. | DOI | MR | Zbl

[8] J. Dolbeault, C. Mouhot and C. Schmeiser, Hypocoercivity for linear kinetic equations conserving mass. Trans. AMS 367 (2015) 3807–3828. | DOI | MR | Zbl

[9] J.-P. Eckmann and M. Hairer, Spectral properties of hypoelliptic operators. Commun. Math. Phys. 235 (2003) 233–253. | DOI | MR | Zbl

[10] E.L. Foster, J. Lohéac and M.-B. Tran, A structure preserving scheme for the Kolmogorov-Fokker-Planck equation. J. Comput. Phys. 330 (2017) 319–339. | DOI | MR | Zbl

[11] D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications. Academic Press (2002). | Zbl

[12] M. Grothaus and P. Stilgenbauer, Hypocoercivity for Kolmogorov backward evolution equations and applications. J. Funct. Anal. 267 (2014) 3515–3556. | DOI | MR | Zbl

[13] W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, 235 Springer Science & Business Media (2012). | DOI | MR | Zbl

[14] M. Hairer and G.A. Pavliotis, From ballistic to diffusive behavior in periodic potentials. J. Stat. Phys. 131 (2008) 175–202. | DOI | MR | Zbl

[15] F. Hérau, Short and long time behavior of the Fokker-Planck equation in a confining potential and applications. J. Funct. Anal. 244 (2007) 95–118. | DOI | MR | Zbl

[16] F. Hérau and F. Nier, Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential. Arch. Ration. Mech. Anal. 171 (2004) 151–218. | DOI | MR | Zbl

[17] A. Iacobucci, S. Olla and G. Stoltz, Convergence rates for nonequilibrium Langevin dynamics. To appear in: Ann. Math. Québec DOI: (2017). | DOI | MR | Zbl

[18] M. Kopec, Weak backward error analysis for Langevin process. BIT 55 (2015) 1057–1103. | DOI | MR | Zbl

[19] S.M. Kozlov, Effective diffusion in the Fokker-Planck equation. Math. Notes 45 (1989) 360–368. | DOI | MR | Zbl

[20] J.C. Latorre, G.A. Pavliotis and P.R. Kramer, Corrections to Einstein’s relation for Brownian motion in a tilted periodic potential. J. Stat. Phys. 150 (2013) 776–803. | DOI | MR | Zbl

[21] B. Leimkuhler and C. Matthews, Molecular Dynamics. Springer (2015). | DOI | MR

[22] B. Leimkuhler, C. Matthews and G. Stoltz, The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics. IMA J. Numer. Anal. 36 (2016) 13–79. | MR | Zbl

[23] T. Lelièvre and G. Stoltz, Partial differential equations and stochastic methods in molecular dynamics. Acta Numer. 25 (2016) 681–880. | DOI | MR | Zbl

[24] G.A. Pavliotis and A.M. Stuart, Multiscale Methods: Averaging and Homogenization. Springer Science & Business Media (2008). | MR | Zbl

[25] G.A. Pavliotis and A. Vogiannou, Diffusive transport in periodic potentials: underdamped dynamics. Fluct. Noise Lett. 8 (2008) L155–L173. | DOI | MR

[26] A. Porretta and E. Zuazua, Numerical hypocoercivity for the Kolmogorov equation. Math. Comp. 86 (2017) 97–119. | DOI | MR | Zbl

[27] L. Qi, Some simple estimates for singular values of a matrix. Linear Algebra Appl. 56 (1984) 105–119. | DOI | MR | Zbl

[28] S. Redon, G. Stoltz and Z. Trstanova, Error analysis of modified Langevin dynamics. J. Stat. Phys. 164 (2016) 735–771. | DOI | MR | Zbl

[29] H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications. Springer Series in Synergetics. Springer Berlin Heidelberg (1996). | MR | Zbl

[30] J. Roussel, Variance Reduction for Nonequilibrium Systems. Ph.D. thesis, Université Paris-Est (2018).

[31] D. Talay, Stochastic Hamiltonian systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme. Markov Proc. Rel. Fields 8 (2002) 163–198. | MR | Zbl

[32] M. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation. Oxford University Press (2010). | MR | Zbl

[33] C. Villani, Hypocoercivity, Vol. 202. American Mathematical Society (2009). | MR | Zbl

[34] H. Yserentant, Regularity and Approximability of Electronic Wave Functions. Vol. 2000 of Lecture Notes in Mathematics. Springer (2010). | MR | Zbl

Cité par Sources :