Evolution of a semidiscrete system modeling the scattering of acoustic waves by a piezoelectric solid
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 2, pp. 423-455.

We consider a model problem of the scattering of linear acoustic waves in free homogeneous space by an elastic solid. The stress tensor in the solid combines the effect of a linear dependence of strains with the influence of an existing electric field. The system is closed using Gauss’s law for the associated electric displacement. Well-posedness of the system is studied by its reformulation as a first order in space and time differential system with help of an elliptic lifting operator. We then proceed to studying a semidiscrete formulation, corresponding to an abstract Finite Element discretization in the electric and elastic fields, combined with an abstract Boundary Element approximation of a retarded potential representation of the acoustic field. The results obtained with this approach improve estimates obtained with Laplace domain techniques. While numerical experiments illustrating convergence of a fully discrete version of this problem had already been published, we demonstrate some properties of the full model with some simulations for the two dimensional case.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017045
Classification : 65J08, 65M38, 65M60, 65R20
Mots-clés : Piezoelectricity, coupling of finite and boundary elements, retarded potentials, wave-structure interaction, time-domain boundary integral equations, groups of isometries
Brown, Thomas S. 1 ; Sánchez-Vizuet, Tonatiuh 1 ; Sayas, Francisco-Javier 1

1
@article{M2AN_2018__52_2_423_0,
     author = {Brown, Thomas S. and S\'anchez-Vizuet, Tonatiuh and Sayas, Francisco-Javier},
     title = {Evolution of a semidiscrete system modeling the scattering of acoustic waves by a piezoelectric solid},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {423--455},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {2},
     year = {2018},
     doi = {10.1051/m2an/2017045},
     zbl = {06966729},
     mrnumber = {3834431},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2017045/}
}
TY  - JOUR
AU  - Brown, Thomas S.
AU  - Sánchez-Vizuet, Tonatiuh
AU  - Sayas, Francisco-Javier
TI  - Evolution of a semidiscrete system modeling the scattering of acoustic waves by a piezoelectric solid
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 423
EP  - 455
VL  - 52
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2017045/
DO  - 10.1051/m2an/2017045
LA  - en
ID  - M2AN_2018__52_2_423_0
ER  - 
%0 Journal Article
%A Brown, Thomas S.
%A Sánchez-Vizuet, Tonatiuh
%A Sayas, Francisco-Javier
%T Evolution of a semidiscrete system modeling the scattering of acoustic waves by a piezoelectric solid
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 423-455
%V 52
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2017045/
%R 10.1051/m2an/2017045
%G en
%F M2AN_2018__52_2_423_0
Brown, Thomas S.; Sánchez-Vizuet, Tonatiuh; Sayas, Francisco-Javier. Evolution of a semidiscrete system modeling the scattering of acoustic waves by a piezoelectric solid. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 2, pp. 423-455. doi : 10.1051/m2an/2017045. http://archive.numdam.org/articles/10.1051/m2an/2017045/

[1] R.A. Adams and J.J.F. Fournier, Sobolev spaces, vol. 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/ Press, Amsterdam, 2nd edition (2003) | MR | Zbl

[2] M. Akamatsu and G. Nakamura, Well-posedness of initial-boundary value problems for piezoelectric equations. Appl. Anal. 81 (2002) 129–141 | DOI | MR | Zbl

[3] A. Bamberger and T.H. Duong, Formulation variationnelle pour le calcul de la diffraction d’une onde acoustique par une surface rigide. Math. Methods Appl. Sci. 8 (1986) 598–608 | DOI | MR | Zbl

[4] L. Banjai and M. Schanz, Wave propagation problems treated with convolution quadrature and BEM. In Fast boundary element methods in engineering and industrial applications, volume 63 of Lect. Notes Appl. Comput. Mech. Springer, Heidelberg (2012) 145–184 | DOI | MR | Zbl

[5] J. Bielak and R.C. Maccamy, Symmetric finite element and boundary integral coupling methods for fluid-solid interaction. Quart. Appl. Math. 49 (1991) 107–119 | DOI | MR | Zbl

[6] D. Braess, Finite elements. Cambridge University Press, Cambridge, 3rd edition, 2007. Theory, fast solvers and applications in elasticity theory, Translated from the German by Larry L. Schumaker. | DOI | MR | Zbl

[7] G. Chkadua and D. Natroshvili, Interaction of acoustic waves and piezoelectric structures. Math. Methods Appl. Sci. 38 (2015) 2149–2170 | DOI | MR | Zbl

[8] G. Cimatti, The piezoelectric continuum. Ann. Mat. Pura Appl. 183 (2004) 495–514 | DOI | MR | Zbl

[9] J.-F. Deü, W. Larbi and R. Ohayon, Variational formulations of interior structural-acoustic vibration problems. In Computational Aspects of Structural Acoustics and Vibration. Edited by G. Sandberg and R. Ohayon. Springer Vienna, Vienna (2009) 1–21

[10] V. Domínguez and F.-J. Sayas, Stability of discrete liftings. C. R. Math. Acad. Sci. Paris 337 (2003) 805–808 | DOI | MR | Zbl

[11] B. Flemisch, M. Kaltenbacher, S. Triebenbacher and B.I. Wohlmuth, The equivalence of standard and mixed finite element methods in applications to elasto-acoustic interaction. SIAM J. Scient. Comput. 32 (2010) 1980–2006 | DOI | MR | Zbl

[12] M. Hassell and F.-J. Sayas, Convolution quadrature for wave simulations. In Numerical simulation in physics and engineering, Vol. 9 of SEMA SIMAI Springer Ser. Springer, Cham (2016) 71–159 | DOI | MR | Zbl

[13] M.E. Hassell, T. Qiu, T. Sánchez-Vizuet and F.-J. Sayas, A new and improved analysis of the time domain boundary integral operators for the acoustic wave equation. J. Integral Equ. Appl. 29 (2017) 107–136 | DOI | MR | Zbl

[14] M.E. Hassell and F.-J. Sayas, A fully discrete BEM–FEM scheme for transient acoustic waves. Comput. Methods Appl. Mech. Engrg. 309 (2016) 106–130 | DOI | MR | Zbl

[15] G.C. Hsiao, T. Sánchez-Vizuet and F.-J. Sayas, Boundary and coupled boundary–finite element methods for transient wave–structure interaction. IMA J. Numer. Anal. 37 (2017) 237–265 | DOI | MR | Zbl

[16] G.C. Hsiao, F.-J. Sayas and R.J. Weinacht, Time-dependent fluid-structure interaction. Math. Methods Appl. Sci. 40 (2017) 486–500 | DOI | MR | Zbl

[17] S. Imperiale and P. Joly, Mathematical and numerical modelling of piezoelectric sensors. ESAIM: M2AN 46 (2012) 875–909 | DOI | Numdam | MR | Zbl

[18] A.R. Laliena and F.-J. Sayas, Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves. Numer. Math. 112 (2009) 637–678 | DOI | MR | Zbl

[19] C. Lubich, On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations. Numer. Math. 67 (1994) 365–389 | DOI | MR | Zbl

[20] W. Mclean, Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge (2000) | MR | Zbl

[21] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Vol. 44 of Appl. Math. Sci. Springer-Verlag, New York (1983) | MR | Zbl

[22] T. Sánchez-Vizuet and F.-J. Sayas, Symmetric boundary-finite element discretization of time dependent acoustic scattering by elastic obstacles with piezoelectric behavior. J. Sci. Comput. 70 (2017) 1290–1315 | DOI | MR | Zbl

[23] F.-J. Sayas, Infimum-supremum. Bol. Soc. Esp. Mat. Apl. SeMA 41 (2007) 19–40 | MR | Zbl

[24] F.-J. Sayas, Retarded potentials and time domain integral equations: a roadmap. In Vol. 50 of Springer Series in Computational Mathematics. Springer International Publishing, 1st edition (2016) | DOI | MR

[25] L. Schwartz, Théorie des distributions. Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. IX-X. Nouvelle édition, entiérement corrigée, refondue et augmentée. Hermann, Paris (1966) | MR | Zbl

[26] J.-Q. Tarn and H.-H. Chang, A Hamiltonian state space approach to anisotropic elasticity and piezoelasticity. Acta Mech. 224 (2013) 1271–1284 | DOI | MR | Zbl

Cité par Sources :