In this paper, we give a second order in time incremental pressure correction finite element method for the Navier-Stokes/Darcy problem. In this method, the Navier-Stokes/Darcy problem is solved in three steps: a convection-diffusion step, a projection correction (incremental pressure correction) step and a Darcy step. In this way, the Navier-Stokes/Darcy equation is solved in a fractional step way, which is a decoupled method. In order to decouple the equation, we use the numerical solutions at the last time level to give the interface conditions. The stability analysis shows that the second order in time incremental pressure correction finite element method is unconditionally stable. The optimal error estimate is also given. Finally, we present some numerical results to show the efficiency of the method.
Accepté le :
DOI : 10.1051/m2an/2017049
Mots-clés : Navier-Stokes/Darcy equations, projection method, second order in time, incremental pressure correction method, stability analysis, optimal error analysis
@article{M2AN_2018__52_4_1477_0, author = {Wang, Yunxia and Li, Shishun and Si, Zhiyong}, title = {A second order in time incremental pressure correction finite element method for the {Navier-Stokes/Darcy} problem}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1477--1500}, publisher = {EDP-Sciences}, volume = {52}, number = {4}, year = {2018}, doi = {10.1051/m2an/2017049}, zbl = {1405.76011}, mrnumber = {3875294}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2017049/} }
TY - JOUR AU - Wang, Yunxia AU - Li, Shishun AU - Si, Zhiyong TI - A second order in time incremental pressure correction finite element method for the Navier-Stokes/Darcy problem JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2018 SP - 1477 EP - 1500 VL - 52 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2017049/ DO - 10.1051/m2an/2017049 LA - en ID - M2AN_2018__52_4_1477_0 ER -
%0 Journal Article %A Wang, Yunxia %A Li, Shishun %A Si, Zhiyong %T A second order in time incremental pressure correction finite element method for the Navier-Stokes/Darcy problem %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2018 %P 1477-1500 %V 52 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2017049/ %R 10.1051/m2an/2017049 %G en %F M2AN_2018__52_4_1477_0
Wang, Yunxia; Li, Shishun; Si, Zhiyong. A second order in time incremental pressure correction finite element method for the Navier-Stokes/Darcy problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1477-1500. doi : 10.1051/m2an/2017049. http://archive.numdam.org/articles/10.1051/m2an/2017049/
[1] A residual-based a posteriori error estimator for the Stokes-Darcy coupled problem. SIAM J. Numer. Anal. 48 (2010) 498–523. | DOI | MR | Zbl
and ,[2] Unified stabilized finite element formulations for the Stokes and the Darcy problems. SIAM J. Numer. Anal. 47 (2009) 1971–2000. | DOI | MR | Zbl
and ,[3] Numerical analysis of the Navier-Stokes/Darcy coupling. Numer. Math. 115 (2010) 195–227. | DOI | MR | Zbl
, and ,[4] Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30 (1967) 197–207. | DOI
and ,[5] Numerical solution to a mixed Navier–Stokes/Darcy model by the two-grid approach. SIAM J. Numer. Anal. 47 (2009) 3325–3338. | DOI | MR | Zbl
, and ,[6] Robin-Robin domain decomposition methods for the steady–state Stokes– Darcy system with the Beavers–Joseph interface condition. Numer. Math. 117 (2011) 601–629. | DOI | MR | Zbl
, , and ,[7] Existence of a weak solution for the fully coupled Navier-Stokes/Darcy-transport problem. J. Differ. Equ. 252 (2012) 4138–4175. | DOI | MR | Zbl
and ,[8] On the solution of the coupled Navier-Stokes and Darcy equations. Comput. Method Appl. M. 198 (2009) 3806–3820. | DOI | MR | Zbl
and ,[9] Numerical solution of the Navier-Stokes equations. Math. Comput. 22 (1968) 745–762. | DOI | MR | Zbl
,[10] A parallel Robin-Robin domain decomposition method for the Stokes-Darcy system. SIAM J. Numer. Anal. 49 (2011) 1064–1084. | DOI | MR | Zbl
, , and ,[11] Numerical solution of the Navier-Stokes equations. Math. Comput. 22 (1968) 745–762. | DOI | MR | Zbl
,[12] A posteriori error estimate for the Stokes-Darcy system. Math. Method Appl. Sci. 34 (2011) 1050–1064. | DOI | MR | Zbl
and ,[13] Navier-Stokes/Darcy coupling: Modeling, analysis, and numerical approximation. Rev. Mat. Comp. 22 (2009) 315–426. | MR | Zbl
and ,[14] Robin-Robin domain decomposition methods for the Stokes-Darcy coupling. SIAM J. Numer. Anal. 45 (2007) 1246–1268. | DOI | MR | Zbl
, and ,[15] W.E. and Projection method I: Convergence and numerical boundary layers. SIAM J. Numer. Anal. 32 (1995) 1017– 1057. | MR | Zbl
,[16] W.E. and Gauge method for viscous incompressible flows. Commun. Math. Sci. 1 (2003) 317–332. | DOI | MR | Zbl
,[17] Analysis of fully-mixed finite element methods for the Stokes-Darcy coupled problem. Math. Comput. 80 (2011) 1911–1948. | DOI | MR | Zbl
, and ,[18] DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition. SIAM J. Numer. Anal. 47 (2009) 2052–2089. | DOI | MR | Zbl
and ,[19] Some practical implementations of projection methods for Navier Stokes equations. ESAIM: M2AN 30 (1996) 637–C667. | DOI | Numdam | MR | Zbl
,[20] Un résultat de convergence d’ordre deux en temps pour l’approximation des équations de Navier–Stokes par une technique deprojection incrementale. ESAIM: M2AN 33 (1999) 169–189. | DOI | Numdam | MR | Zbl
,[21] An overview of projection methods for incompressible flows. Comput. Method Appl. Math. 195 (2006) 6011–6045. | MR | Zbl
, and ,[22] On the approximation of the unsteady Navier-Stokes equations by finite element projection methods. Numer. Math. 80 (1998) 207–238. | DOI | MR | Zbl
and ,[23] Analysis of a projection/characteristic scheme for incompressible flow. Comm. Numer. Methods Eng. 19 (2003) 535–550. | DOI | MR | Zbl
and ,[24] Error analysis of pressure-correction schemes for the Navier-Stokes equations with open boundary conditions. SIAM J. Numer. Anal. 43 (2005) 239–258. | DOI | MR | Zbl
, and ,[25] On stability and convergence of projection methods based on pressure Poisson equation. Int. J. Numer. Methods Fluids. 26 (1998) 1039–1053. | DOI | MR | Zbl
and ,[26] On the approximation of the unsteady Navier Stokes equations by finite element projection methods. Numer. Math. 80 (1998) 207–238. | DOI | MR | Zbl
and ,[27] Velocity-correction projection methods for incompressible flows. SIAM J. Numer. Anal. 41 (2003) 112–134. | DOI | MR | Zbl
and ,[28] A new class of truly consistent splitting schemes for incompressible flows. J. Comput . Phys. 192 (2003) 262–276. | DOI | MR | Zbl
and ,[29] On the error estimates of rotational pressure-correction projection methods. Math. Comput. 73 (2004) 1719–1737. | DOI | MR | Zbl
and ,[30] New development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. | MR | Zbl
,[31] Fluid-porous interface conditions with the “inertia term” ½ǁufluidǁ2 are not Galilean invariant. Tech. Rep. TR-MATH 09-30, University of Pittsburgh (2009).
,[32] Long time stability of four methods for splitting the evolutionary Stokes-Darcy problems into Stokes and Darcy subproblems. J. Comput. Appl. Math. 236 (2012) 3198–3217. | DOI | MR | Zbl
, and ,[33] On the quasistatic approximation in the Stokes-Darcy model of groundwater-surface water flows. J. Math. Anal. Appl. 394 (2012) 796–808. | DOI | MR | Zbl
,[34] Decoupled schemes for a non-stationary mixed Stokes-Darcy model. Math. Comput. 79 (2010) 707–731. | DOI | MR | Zbl
and ,[35] Error estimates for semi-discrete gauge methods for the Navier-Stokes equations. Math. Comput. 74 (2005) 521–542. | DOI | MR | Zbl
and ,[36] On the boundary at the surface of a porous medium. Studies Appl. Math. 50 (1971) 93–101. | DOI | Zbl
,[37] A decoupling method with different subdomain time steps for the nonstationary stokes–darcy model. Numer. Methods Partial Diff. Equ. 29 (2013) 549–583. | DOI | MR | Zbl
, and ,[38] On error estimates of the projection methods for the Navier-Stokes equations: First-order schemes. SIAM J. Numer. Anal. 29 (1992) 57–77. | DOI | MR | Zbl
,[39] On error estimates of projection methods for the Navier-Stokes equations: second-order schemes. Math. Comput. 65 (1996) 1039–1065. | DOI | MR | Zbl
,[40] A new pseudo-compressibility method for the Navier-Stokes equations. Appl. Numer. Math. 21 (1996) 71–90. | DOI | MR | Zbl
,[41] Error estimates for finite element approximations of consistent splitting schemes for incompressible flows. DCDS-B. 8 (2007) 663–676. | DOI | MR | Zbl
and ,[42] Decoupled modified characteristics finite element method for the time dependent Navier-Stokes/Darcy problem. Math. Method Appl. Sci. 37 (2014) 1392–1404. | DOI | MR | Zbl
, and ,[43] On error estimates of the pressure-correction projection methods for the time-dependent Navier-Stokes equations. Int. J. Numer. Anal. Model 8 (2011) 70–85. | MR | Zbl
, and ,[44] Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires II. Arch. Rat. Mech. Anal. 33 (1969) 377–385. | DOI | MR | Zbl
,[45] Coupling Stokes-Darcy flow with transport. SIAM J. Sci. Comput. 31 (2009) 3661–3684. | DOI | MR | Zbl
and ,[46] A large time stepping viscosity-splitting finite element method for the viscoelastic flow problem. Adv. Comput. Math. 41 (2015) 149–190. | DOI | MR | Zbl
, and ,[47] Numerical analysis for the mixed Navier-Stokes and Darcy Problem with the Beavers-Joseph interface condition. Numer. Methods Partial Diff. Equ. 31 (2015) 1009–1030. | DOI | MR | Zbl
and ,Cité par Sources :