Cross-diffusion systems with non-zero flux and moving boundary conditions
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1385-1415.

We propose and analyze a one-dimensional multi-species cross-diffusion system with non-zero-flux boundary conditions on a moving domain, motivated by the modeling of a Physical Vapor Deposition process. Using the boundedness by entropy method introduced and developped in [5, 16], we prove the existence of a global weak solution to the obtained system. In addition, existence of a solution to an optimization problem defined on the fluxes is established under the assumption that the solution to the considered cross-diffusion system is unique. Lastly, we prove that in the case when the imposed external fluxes are constant and positive and the entropy density is defined as a classical logarithmic entropy, the concentrations of the different species converge in the long-time limit to constant profiles at a rate inversely proportional to time. These theoretical results are illustrated by numerical tests.

DOI : 10.1051/m2an/2017053
Mots-clés : cross-diffusion, optimization, entropy method
Bakhta, Athmane 1 ; Ehrlacher, Virginie 2

1 Université Paris-Est, CERMICS(ENPC), Marne-la-Vallée, France
2 Université Paris-Est, CERMICS (ENPC) and INRIA (Matherials team-project), 77455 Marne-la-Vallée, France
@article{M2AN_2018__52_4_1385_0,
     author = {Bakhta, Athmane and Ehrlacher, Virginie},
     title = {Cross-diffusion systems with non-zero flux and moving boundary conditions},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1385--1415},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {4},
     year = {2018},
     doi = {10.1051/m2an/2017053},
     mrnumber = {3875290},
     zbl = {1408.65051},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2017053/}
}
TY  - JOUR
AU  - Bakhta, Athmane
AU  - Ehrlacher, Virginie
TI  - Cross-diffusion systems with non-zero flux and moving boundary conditions
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 1385
EP  - 1415
VL  - 52
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2017053/
DO  - 10.1051/m2an/2017053
LA  - en
ID  - M2AN_2018__52_4_1385_0
ER  - 
%0 Journal Article
%A Bakhta, Athmane
%A Ehrlacher, Virginie
%T Cross-diffusion systems with non-zero flux and moving boundary conditions
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 1385-1415
%V 52
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2017053/
%R 10.1051/m2an/2017053
%G en
%F M2AN_2018__52_4_1385_0
Bakhta, Athmane; Ehrlacher, Virginie. Cross-diffusion systems with non-zero flux and moving boundary conditions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1385-1415. doi : 10.1051/m2an/2017053. http://archive.numdam.org/articles/10.1051/m2an/2017053/

[1] N.D. Alikakos, Lp bounds of solutions of reaction-diffusion equations. Commun. Partial Differ. Equ. 4 (1979) 827–868. | DOI | MR | Zbl

[2] H. Amann et al., Dynamic theory of quasilinear parabolic equations. ii. reaction-diffusion systems. Differ. Integral Eqs. 3 (1990) 13–75. | MR | Zbl

[3] A. Bakhta, Mathematical models and numerical simulation of photovoltaic devices. Ph.D. thesis, in preparation (2017).

[4] L. Boudin, B. Grec and F. Salvarani, A mathematical and numerical analysis of the maxwell-stefan diffusion equations. Discrete and Continuous Dynamical Systems-Series B 17 (2012) 1427–1440. | DOI | MR | Zbl

[5] M. Burger, M.Di Francesco, J.-F. Pietschmann and Bärbel Schlake, Nonlinear cross-diffusion with size exclusion. SIAM J. Math. Anal. 42 (2010) 2842–2871. | DOI | MR | Zbl

[6] L. Chen and A. Jüngel, Analysis of a multidimensional parabolic population model with strong cross-diffusion. SIAM J. Math. Anal. 36 (2004) 301–322. | DOI | MR | Zbl

[7] L. Chen and A. Jüngel, Analysis of a parabolic cross-diffusion population model without self-diffusion. J. Differ. Equ. 224 (2006) 39–59. | DOI | MR | Zbl

[8] M. Di Francesco and J. Rosado, Fully parabolic keller–segel model for chemotaxis with prevention of overcrowding. Nonlinearity 21 (2008) 2715. | DOI | MR | Zbl

[9] J. Dolbeault, B. Nazaret and G. Savaré, A new class of transport distances between measures. Calcul. Variat. Partial Differ. Equ. 34 (2009) 193–231. | DOI | MR | Zbl

[10] M. Dreher and A. Jüngel, Compact families of piecewise constant functions in lp (0, t; b). Nonl. Anal.: Theory, Methods Appl. 75 (2012) 3072–3077. | DOI | MR | Zbl

[11] J.A. Griepentrog and L. Recke. Local existence, uniqueness and smooth dependence for nonsmooth quasilinear parabolic problems. J. Evol. Equ. 10 (2010) 341–375. | DOI | MR | Zbl

[12] Th. Hillen and K.J. Painter, A user’s guide to pde models for chemotaxis. J. Math. Biology 58 (2009) 183–217. | DOI | MR | Zbl

[13] C. Lemaréchal and J.Frédréric Bonnans, J. Charles Gilbert and C. Sagastizábal, Numer. Optimiz. Theoretical Practical Aspects volume 1. Springer Verlag Berlin Heidelberg (2006). | MR | Zbl

[14] R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the fokker–planck equation. SIAM J. Math. Anal. 29 (1998) 1–17. | DOI | MR | Zbl

[15] A. Juengel and I. Viktoria Stelzer, Entropy structure of a cross-diffusion tumor-growth model. Math. Models Methods Appl. Sci. 22 (2012) 1250009. | DOI | MR | Zbl

[16] A. Jüngel, The boundedness-by-entropy method for cross-diffusion systems. Nonl. 28 (2015) 1963. | MR | Zbl

[17] A. Jungel and I.V. Stelzer, Existence analysis of maxwell–stefan systems for multicomponent mixtures. SIAM J. Math. Anal. 45 (2013) 2421–2440. | DOI | MR | Zbl

[18] K. Horst Wilhelm Küfner, Invariant regions for quasilinear reaction-diffusion systems and applications to a two population model. Nonl. Differ. Equ. Appl. NoDEA 3 (1996) 421–444. | DOI | MR | Zbl

[19] O.A. Ladyzenskaja and V.A. Solonnikov, N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, translated from the russian by s. smith. translations of mathematical monographs, vol. 23. Amer. Math. Soc., Providence, RI 63 (1967) 64. | MR | Zbl

[20] D. Le and T.T. Nguyen, Everywhere regularity of solutions to a class of strongly coupled degenerate parabolic systems. Commun. Partial Differ. Equ. 31 (2006) 307–324. | DOI | MR | Zbl

[21] Th. Lepoutre, M. Pierre and G. Rolland, Global well-posedness of a conservative relaxed cross diffusion system. SIAM J. Math. Anal. 44 (2012) 1674–1693. | DOI | MR | Zbl

[22] M. Liero and A. Mielke, Gradient structures and geodesic convexity for reaction–diffusion systems. Phil. Trans. R. Soc. A 371 (2013) 20120346. | DOI | MR | Zbl

[23] J.L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, volume 1. Springer Science and Business Media (2012). | MR | Zbl

[24] P. Markowich, A. Unterreiter, A. Arnold and G. Toscani, On Generalized Csiszár-Kullback Inequalities. Monatshefte für Math. 131 (2000) 235–253. | DOI | MR | Zbl

[25] D.M. Mattox, Handbook of physical vapor deposition (PVD) processing. William Andrew (2010).

[26] K.J. Painter, Continuous models for cell migration in tissues and applications to cell sorting via differential chemotaxis. Bulletin Math. Biology 71 (2009) 1117–1147. | DOI | MR | Zbl

[27] J.W. Portegies and M.A. Peletier, Well-posedness of a parabolic moving-boundary problem in the setting of wasserstein gradient flows. Preprint arXiv: 0812.1269 (2008). | MR | Zbl

[28] R. Redlinger, Invariant sets for strongly coupled reaction-diffusion systems under general boundary conditions. Archive for Rational Mech. Anal. 108 (1989) 281–291. | DOI | MR | Zbl

[29] J. Stará and O. John, Some (new) counterexamples of parabolic systems. Commentationes Mathematicae Universitatis Carolinae 36 (1995) 503–510. | MR | Zbl

[30] N. Zamponi and A. Jüngel, Analysis of degenerate cross-diffusion population models with volume filling. Ann. Institut Henri Poincaré (C) Non Linear Anal. 34 (2017) 1–29. | DOI | Numdam | MR | Zbl

[31] N. Zamponi and A. Jüngel, Analysis of degenerate cross-diffusion population models with volume filling (Corrigendum). Ann. Institut Henri Poincaré (C) Non Linear Analysis. 34 (2017) 789–792. | DOI | Numdam | MR | Zbl

[32] J. Zinsl and D. Matthes, Transport distances and geodesic convexity for systems of degenerate diffusion equations. Calc. Variat. Part. Differ. Equ. 54 (2015) 3397–3438. | DOI | MR | Zbl

Cité par Sources :