Entropy-stable space–time DG schemes for non-conservative hyperbolic systems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 3, pp. 995-1022.

We propose a space–time discontinuous Galerkin (DG) method to approximate multi-dimensional non-conservative hyperbolic systems. The scheme is based on a particular choice of interface fluctuations. The key difference with existing space–time DG methods lies in the fact that our scheme is formulated in entropy variables, allowing us to prove entropy stability for the method. Additional numerical stabilization in the form of streamline diffusion and shock-capturing terms are added. The resulting method is entropy stable, arbitrary high-order accurate, fully discrete, and able to handle complex domain geometries discretized with unstructured grids. We illustrate the method with representative numerical examples.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017056
Classification : 65M60, 65M12, 35L60, 76L05
Mots-clés : Multidimensional nonconservative hyperbolic systems, space–time discontinuous Galerkin methods, entropy-stability, streamline diffusion, shock-capturing methods, two-layer shallow water system.
Hiltebrand, Andreas 1 ; Mishra, Siddhartha 1 ; Parés, Carlos 1

1
@article{M2AN_2018__52_3_995_0,
     author = {Hiltebrand, Andreas and Mishra, Siddhartha and Par\'es, Carlos},
     title = {Entropy-stable space{\textendash}time {DG} schemes for non-conservative hyperbolic systems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {995--1022},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {3},
     year = {2018},
     doi = {10.1051/m2an/2017056},
     mrnumber = {3865556},
     zbl = {1405.65121},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2017056/}
}
TY  - JOUR
AU  - Hiltebrand, Andreas
AU  - Mishra, Siddhartha
AU  - Parés, Carlos
TI  - Entropy-stable space–time DG schemes for non-conservative hyperbolic systems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 995
EP  - 1022
VL  - 52
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2017056/
DO  - 10.1051/m2an/2017056
LA  - en
ID  - M2AN_2018__52_3_995_0
ER  - 
%0 Journal Article
%A Hiltebrand, Andreas
%A Mishra, Siddhartha
%A Parés, Carlos
%T Entropy-stable space–time DG schemes for non-conservative hyperbolic systems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 995-1022
%V 52
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2017056/
%R 10.1051/m2an/2017056
%G en
%F M2AN_2018__52_3_995_0
Hiltebrand, Andreas; Mishra, Siddhartha; Parés, Carlos. Entropy-stable space–time DG schemes for non-conservative hyperbolic systems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 3, pp. 995-1022. doi : 10.1051/m2an/2017056. http://archive.numdam.org/articles/10.1051/m2an/2017056/

[1] R. Abgrall and S. Karni, A comment on the computation of nonconservative products. J. Comput. Phys. 45 (2010) 382–403.

[2] T.J. Barth, Numerical methods for gas-dynamics systems on unstructured meshes, in An Introduction to Recent Developments in Theory and Numerics of Conservation Laws. Vol. 5 of Lecture Notes in Computational Science and Engineering, D. Kroner, M. Ohlberger and C. Rohde, eds. Springer, Berlin (1999) 195–285. | MR | Zbl

[3] A. Beljadid, P.G. Lefloch, S. Mishra and C. Parés, Schemes with well-controlled dissipation. Hyperbolic systems in nonconservative form. Commun. Comput. Phys. 21 (2017) 913–946. | DOI | MR | Zbl

[4] C. Berthon, Nonlinear scheme for approximating a non-conservative hyperbolic system. C. R. Math. Acad. Sci. Paris 335 (2002) 1069–1072. | MR | Zbl

[5] M.J. Castro, J. Macías and C. Parés, A Q-scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system. ESAIM: M2AN. 35 (2001) 107–127. | DOI | Numdam | MR | Zbl

[6] M.J. Castro, J.M. Gallardo and C. Parés, High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems. Math. Comput. 75 (2006) 1103–1134. | DOI | MR | Zbl

[7] M.J. Castro, P.G. Lefloch, M.L. Muñoz-Ruiz and C. Parés, Why many theories of shock waves are necessary. Convergence error in formally path-consistent schemes. J. Comput. Phys. 227 (2008) 8107–8129. | DOI | MR | Zbl

[8] M.J. Castro, C. Parés, G. Puppo and G. Russo, Central schemes for nonconservative hyperbolic systems. SIAM J. Sci. Comput. 34 (2012) 523–558. | DOI | MR | Zbl

[9] M.J. Castro, U.S. Fjordholm, S. Mishra and C. Parés, Entropy conservative and entropy stable schemes for nonconservative hyperbolic systems. SIAM J. Numer. Anal. 51 (2013) 1371–1391. | DOI | MR | Zbl

[10] M.J. Castro, T. Morales De Luna and C. Parés, Well-balanced schemes and path-conservative numerical methods, in Handbook of numerical methods for hyperbolic problems. Vol. 18 of Handb. Numer. Anal. Elsevier, North-Holland, Amsterdam (2017) 131–175. | DOI | MR | Zbl

[11] C.M. Dafermos, in Hyperbolic Conservation Laws in Continuum Physics, Vol. 325 of Grundlehren Math. Wissenschaften Series. Springer Verlag (2000). | DOI | MR | Zbl

[12] G. Dal Maso, P.G. Lefloch and F. Murat, Definition and weak stability of nonconservative products. J. Math. Pure Appl. 74 (1995) 483–548. | MR | Zbl

[13] M. Dumbser, M.J. Castro, C. Parés and E.F. Toro, ADER schemes on unstructured meshes for nonconservative hyperbolic systems: applications to geophysical flows. Comput. Fluids 38 (2009) 1731–1748. | DOI | MR | Zbl

[14] M. Dumbser, A. Hidalgo, M.J. Castro, C. Parés and E.F. Toro, FORCE schemes on unstructured meshes II: nonconservative hyperbolic systems. Comput. Meth. Appl. Mech. Eng. 199 (2010) 625–647. | DOI | MR | Zbl

[15] U.S. Fjordholm and S. Mishra, Accurate numerical discretizations of nonconservative hyperbolic systems. ESAIM: M2AN. 46 (2012) 187–296. | DOI | Numdam | MR | Zbl

[16] U.S. Fjordholm, S. Mishra and E. Tadmor, Arbitrary order accurate essentially non-oscillatory entropy stable schemes for systems of conservation laws. SIAM J. Numer. Anal. 50 (2012) 544–573. | DOI | MR | Zbl

[17] A. Hiltebrand, Entropy-stable discontinuous Galerkin finite element methods with streamline diffusion and shock-capturing for hyperbolic systems of conservation laws. Ph.D. thesis, ETH Zurich, No. 22279 (2014).

[18] A. Hiltebrand and S. Mishra, Entropy stable shock-capturing space–time discontinuous Galerkin schemes for systems of conservation laws. Numer. Math. 126 (2014) 103–151. | DOI | MR | Zbl

[19] A. Hiltebrand and S. Mishra, Efficient preconditioners for a shock-capturing space–time discontinuous Galerkin schemes for systems of conservation laws. Commun. Comput. Phys. 17 (2015) 1360–1387. | DOI

[20] T.Y. Hou and P.G. Lefloch, Why nonconservative schemes converge to wrong solutions. Error analysis. Math. Comput. 62 (1994) 497–530. | DOI | MR | Zbl

[21] J. Jaffre, C. Johnson and A. Szepessy, Convergence of the discontinuous Galerkin finite element method for hyperbolic conservation laws. Math. Model. Meth. Appl. Sci. 5 (1995) 367–386. | DOI | MR | Zbl

[22] C. Johnson and A. Szepessy, On the convergence of a finite element method for a nonlinear hyperbolic conservation law. Math. Comput. 49 (1987) 427–444. | DOI | MR | Zbl

[23] S. Karni, Viscous shock profiles and primitive formulations. SIAM J. Numer. Anal. 29 (1992) 1592–1609. | DOI | MR | Zbl

[24] P.G. Lefloch, in Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves. Lecture Notes in Mathematics. ETH Zürich, Birkhäuser (2002). | DOI | MR | Zbl

[25] P.G. Lefloch and S. Mishra, Numerical methods with controlled dissipation for small-scale dependent shocks. Acta Numer. 23 (2014) 743–816. | DOI | MR | Zbl

[26] C. Parés, Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal. 44 (2006) 300–321. | DOI | MR | Zbl

[27] S. Rhebergen, O. Bokhove and J.J.W. Van Der Vegt, Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations. J. Comput. Phys. 227 (2008) 1887–1922. | DOI | MR | Zbl

[28] E. Tadmor, Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12 (2003) 451–512. | DOI | MR | Zbl

Cité par Sources :