Atmospheric radiation boundary conditions for the Helmholtz equation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 3, pp. 945-964.

This work offers some contributions to the numerical study of acoustic waves propagating in the Sun and its atmosphere. The main goal is to provide boundary conditions for outgoing waves in the solar atmosphere where it is assumed that the sound speed is constant and the density decays exponentially with radius. Outgoing waves are governed by a Dirichlet-to-Neumann map which is obtained from the factorization of the Helmholtz equation expressed in spherical coordinates. For the purpose of extending the outgoing wave equation to axisymmetric or 3D cases, different approximations are implemented by using the frequency and/or the angle of incidence as parameters of interest. This results in boundary conditions called atmospheric radiation boundary conditions (ARBC) which are tested in ideal and realistic configurations. These ARBCs deliver accurate results and reduce the computational burden by a factor of two in helioseismology applications.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017059
Classification : 00A71, 35L05, 85A20, 33C55, 65M60
Mots-clés : Radiation boundary condition, Helmholtz equation, atmosphere.
Barucq, Hélène 1 ; Chabassier, Juliette 1 ; Duruflé, Marc 1 ; Gizon, Laurent 1 ; Leguèbe, Michael 1

1
@article{M2AN_2018__52_3_945_0,
     author = {Barucq, H\'el\`ene and Chabassier, Juliette and Durufl\'e, Marc and Gizon, Laurent and Legu\`ebe, Michael},
     title = {Atmospheric radiation boundary conditions for the {Helmholtz} equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {945--964},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {3},
     year = {2018},
     doi = {10.1051/m2an/2017059},
     mrnumber = {3865554},
     zbl = {1403.85001},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2017059/}
}
TY  - JOUR
AU  - Barucq, Hélène
AU  - Chabassier, Juliette
AU  - Duruflé, Marc
AU  - Gizon, Laurent
AU  - Leguèbe, Michael
TI  - Atmospheric radiation boundary conditions for the Helmholtz equation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 945
EP  - 964
VL  - 52
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2017059/
DO  - 10.1051/m2an/2017059
LA  - en
ID  - M2AN_2018__52_3_945_0
ER  - 
%0 Journal Article
%A Barucq, Hélène
%A Chabassier, Juliette
%A Duruflé, Marc
%A Gizon, Laurent
%A Leguèbe, Michael
%T Atmospheric radiation boundary conditions for the Helmholtz equation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 945-964
%V 52
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2017059/
%R 10.1051/m2an/2017059
%G en
%F M2AN_2018__52_3_945_0
Barucq, Hélène; Chabassier, Juliette; Duruflé, Marc; Gizon, Laurent; Leguèbe, Michael. Atmospheric radiation boundary conditions for the Helmholtz equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 3, pp. 945-964. doi : 10.1051/m2an/2017059. http://archive.numdam.org/articles/10.1051/m2an/2017059/

[1] X. Antoine, Fast approximate computation of a time-harmonic scattered field using the on-surface radiation condition method. IMA J. Appl. Math. 66 (2001) 83–110. | DOI | MR | Zbl

[2] X. Antoine, H. Barucq and A. Bendali, Bayliss-Turkel-like radiation conditions on surfaces of arbitrary shape. J. Math. Anal. Appl. 229 (1999) 184–211. | DOI | MR | Zbl

[3] H. Barucq, R. Djellouli and A.G. Saint-Guirons, Performance assessment of a new class of local absorbing boundary conditions for elliptical- and prolate spheroidal-shaped boundaries. Appl. Numer. Math. 59 (2009) 1467–1498. | DOI | MR | Zbl

[4] H. Barucq, R. Djellouli and A.G. Saint-Guirons, Three-dimensional approximate local DtN boundary conditions for prolate spheroid boundaries. J. Comput. Appl. Math. 234 (2010) 1810–1816. | DOI | MR | Zbl

[5] A. Bayliss, M. Gunzburger and E. Turkel, Boundary conditions for the numerical solution of elliptic equations in exterior regions. SIAM J. Appl. Math. 42 (1982) 430–451. | DOI | MR | Zbl

[6] J. Chabassier and M. Duruflé, High order finite element method for solving convected Helmholtz equation in radial and axisymmetric domains. Application to helioseismology. Inria Bordeaux Sud-Ouest Research Report, RR-8893 (2016) 1–54.

[7] J. Chabassier, M. Duruflé and V. Péron, Equivalent boundary conditions for acoustic media with exponential densities. Application to the atmosphere in helioseismology. Inria Bordeaux Sud-Ouest Research Report, RR-8954 (2016) 1–32. | Zbl

[8] J. Christensen-Dalsgaard, W. Däppen, S.V. Ajukov, et al., The current state of solar modeling. Science 272 (1996) 1286–1292. | DOI

[9] D. Fournier, M. Leguèbe, C.S. Hanson, et al., Atmospheric radiation boundary conditions for high frequency waves in time-distance helioseismology. A&A 608 (2017) A109. | DOI

[10] L. Gizon, A.C. Birch and H.C. Spruit, Local helioseismology: three-dimensional imaging of the solar interior. Annu. Rev. Astron. Astrophys. 48 (2010) 289–338. | DOI

[11] L. Gizon, H. Barucq, M. Duruflé, et al., Computational helioseismology in the frequency domain: acoustic waves in axisymmetric solar models with flows. A&A 600 (2017) A35. | DOI

[12] A.G. Kosovichev, Advances in Global and Local Helioseismology: An Introductory Preview. The Pulsations of the Sun and the Stars. Vol. 832 of Lecture Notes in Physics. Springer-Verlag, Berlin, Heidelberg (2011) 3–84. | DOI

[13] L. Nirenberg, Lectures on Linear Partial Differential Equations. Vol. 17 of CBMS Regional Conference Series in Mathematics. American Mathematical Society, Providence, RI (1973). | DOI | MR | Zbl

[14] S.H. Schot, Eighty years of Sommerfeld’s radiation condition. Hist. Math. 19 (1992) 385–401. | DOI | MR | Zbl

[15] H. Schunker, R.H. Cameron, L. Gizon and H. Moradi, Constructing and characterising solar structure models for computational helioseismology. Sol. Phys. 271 (2011) 1–26. | DOI

Cité par Sources :