Convergence of a finite volume scheme for a parabolic system with a free boundary modeling concrete carbonation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 2, pp. 457-480.

In this paper we define and study a finite volume scheme for a concrete carbonation model proposed by Aiki and Muntean in [Adv. Math. Sci. Appl. 19 (2009) 109–129]. The model consists in a system of two weakly coupled parabolic equations in a varying domain whose length is governed by an ordinary differential equation. The numerical sheme is obtained by a Euler discretisation in time and a Scharfetter-Gummel discretisation in space. We establish the convergence of the scheme. As a by-product, we obtain existence of a solution to the model. Finally, some numerical experiments show the efficiency of the scheme.

DOI : 10.1051/m2an/2018002
Classification : 65M08, 65M12
Mots-clés : Finite volume scheme, carbonation model, convergence analysis, free-boundary system
Chainais-Hillairet, Claire 1 ; Merlet, Benoît 1 ; Zurek, Antoine 1

1
@article{M2AN_2018__52_2_457_0,
     author = {Chainais-Hillairet, Claire and Merlet, Beno{\^\i}t and Zurek, Antoine},
     title = {Convergence of a finite volume scheme for a parabolic system with a free boundary modeling concrete carbonation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {457--480},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {2},
     year = {2018},
     doi = {10.1051/m2an/2018002},
     zbl = {1404.65109},
     mrnumber = {3834432},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2018002/}
}
TY  - JOUR
AU  - Chainais-Hillairet, Claire
AU  - Merlet, Benoît
AU  - Zurek, Antoine
TI  - Convergence of a finite volume scheme for a parabolic system with a free boundary modeling concrete carbonation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 457
EP  - 480
VL  - 52
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2018002/
DO  - 10.1051/m2an/2018002
LA  - en
ID  - M2AN_2018__52_2_457_0
ER  - 
%0 Journal Article
%A Chainais-Hillairet, Claire
%A Merlet, Benoît
%A Zurek, Antoine
%T Convergence of a finite volume scheme for a parabolic system with a free boundary modeling concrete carbonation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 457-480
%V 52
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2018002/
%R 10.1051/m2an/2018002
%G en
%F M2AN_2018__52_2_457_0
Chainais-Hillairet, Claire; Merlet, Benoît; Zurek, Antoine. Convergence of a finite volume scheme for a parabolic system with a free boundary modeling concrete carbonation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 2, pp. 457-480. doi : 10.1051/m2an/2018002. http://archive.numdam.org/articles/10.1051/m2an/2018002/

[1] T. Aiki and A. Muntean. Existence and uniqueness of solutions to a mathematical model predicting service life of concrete structure. Adv. Math. Sci. Appl. 19 (2009) 109–129. | MR | Zbl

[2] T. Aiki and A. Muntean, Large time behavior of solutions to a moving-interface problem modeling concrete carbonation. Commun. Pure Appl. Anal. 9 (2010) 1117–1129. | DOI | MR | Zbl

[3] T. Aiki and A. Muntean, A free-boundary problem for concrete carbonation: front nucleation and rigorous justification of the T -law of propagation. Interfaces Free Bound. 15 (2012) 167–180. | DOI | MR | Zbl

[4] T. Aiki and A. Muntean, Large-time asymptotics of moving-reaction interfaces involving nonlinear Henry’s law and time-dependent Dirichlet data. Nonlinear Anal. 93 (2013) 3–14. | DOI | MR | Zbl

[5] C. Bataillon, F. Bouchon, C. Chainais-Hillairet, J. Fuhrmann, E. Hoarau and R. Touzani, Numerical methods for the simulation of a corrosion model with a moving oxide layer. J. Comput. Phys. 231 (2012) 6213–6231. | DOI | MR | Zbl

[6] M. Bessemoulin-Chatard, A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Schafetter-Gummel scheme. Numer. Math. 121 (2012) 637–670. | DOI | MR | Zbl

[7] K. Brenner, C. Cancès and D. Hilhorst, Finite volume approximation for an immiscible two-phase flow in porous media with discontinuous capillary pressure. Comput. Geosci. 17 (2013) 573–597. | DOI | MR | Zbl

[8] C. Chainais-Hillairet and C. Bataillon, Mathematical and numerical study of a corrosion model. Numer. Math. 110 (2008) 689–716. | DOI | MR | Zbl

[9] C. Chainais-Hillairet and J. Droniou, Finite volume schemes for non-coercive elliptic problems with Neumann boundary conditions. IMA J. Numer. Anal. 31 (2011) 61–85. | DOI | MR | Zbl

[10] C. Chainais-Hillairet, P.-L. Colin and I. Lacroix-Violet, Convergence of a finite volume scheme for a corrosion model. Int. J. Finite 12 (2015) 1–27. | MR | Zbl

[11] R. Eymard, T. Gallouët and R. Herbin, Finite Volume Methods. Vol. VII of Handbook of Numerical Analysis. North-Holland (2000) 713–1020. | MR | Zbl

[12] T. Gallouët and J.-C. Latché, Compactness of discrete approximate solutions to parabolic PDEs – application to a turbulence model. Commun. Pure Appl. Anal. 11 (2012) 2371–2391. | DOI | MR | Zbl

[13] A.M. Il’In. A difference scheme for a differential equation with a small parameter multiplying the highest derivative. Mat. Zametki 6 (1969) 237–248. | MR

[14] R.D. Lazarov, I.D. Mishev and P.S. Vassilevski, Finite volume methods for convection-diffusion problems. SIAM J. Numer. Anal. 33 (1996) 31–55. | DOI | MR | Zbl

[15] S.A. Meyer, M. Peter, A. Muntean and M. Böhm, Dynamics of the internal reaction layer arising during carbonation of concrete. Chem. Eng. Sci. 62 (2007) 1125–1137. | DOI

[16] A. Muntean, Error bounds on semi-discrete finite element approximations of a moving-boundary system arising in concrete corrosion. Int. J. Numer. Anal. Model. 5 (2008) 353–372. | MR | Zbl

[17] A. Muntean and M. Böhm, On a moving reaction layer model for the prediction of the service life of concrete structures, in Proc. of the International Conference on Performance Based Engineering for 21st Century University of Iasi, Romania, edited by G. Yagawa, M. Kikuchi, G.M. Atanasiu and C. Bratianu (2004) 72–77.

[18] A. Muntean and M. Böhm, On a prediction model for the service life of concrete structures based on moving interfaces, in Proc. of the Second International Conference on Lifetime-Oriented Design Concepts Ruhr University Bochum, Germany, edited byF. Stangenberg, O.T. Bruhns, D. Hartmann and G. Meschke (2004) 209–218.

[19] A. Muntean and M. Böhm, A moving-boundary problem for concrete carbonation: global existence and uniqueness of solutions. J. Math. Anal. Appl. 350 (2009) 234–251. | DOI | MR | Zbl

[20] A. Muntean and M. Neuss-Radu, A multiscale Galerkin approach for a class of nonlinear coupled reaction-diffusion systems in complex media. J. Math. Anal. Appl. 371 (2010) 705–718. | DOI | MR | Zbl

[21] F.A. Radu, A. Muntean, I.S. Pop, N. Suciu and O. Kolditz, A mixed finite element discretization scheme for a concrete carbonation model with concentration-dependent porosity. J. Comput. Appl. Math. 246 (2013) 74–85. | DOI | MR | Zbl

[22] D.L. Scharfetter and H.K. Gummel, Large signal analysis of a silicon read diode oscillator. IEEE Trans. Electron Devices 16 (1969) 64–77. | DOI

[23] Q. Zhang, Mathematical modeling and numerical study of carbonation in porous concrete materials. Appl. Math. Comput. 281 (2016) 16–27. | DOI | Zbl

Cité par Sources :