Goal-oriented error estimation for parameter-dependent nonlinear problems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 2, pp. 705-728.

The main result of this paper gives a numerically efficient method to bound the error that is made when approximating the output of a nonlinear problem depending on an unknown parameter (described by a probability distribution). The class of nonlinear problems under consideration includes high-dimensional nonlinear problems with a nonlinear output function. A goal-oriented probabilistic bound is computed by considering two phases. An offline phase dedicated to the computation of a reduced model during which the full nonlinear problem needs to be solved only a small number of times. The second phase is an online phase which approximates the output. This approach is applied to a toy model and to a nonlinear partial differential equation, more precisely the Burgers equation with unknown initial condition given by two probabilistic parameters. The savings in computational cost are evaluated and presented.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2018003
Classification : 49Q12, 62F12, 65C20, 82C80
Mots-clés : Goal-oriented, probabilistic error estimation, nonlinear problems, uncertainty quantification
Janon, Alexandre 1 ; Nodet, Maëlle 1 ; Prieur, Christophe 1 ; Prieur, Clémentine 1

1
@article{M2AN_2018__52_2_705_0,
     author = {Janon, Alexandre and Nodet, Ma\"elle and Prieur, Christophe and Prieur, Cl\'ementine},
     title = {Goal-oriented error estimation for parameter-dependent nonlinear problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {705--728},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {2},
     year = {2018},
     doi = {10.1051/m2an/2018003},
     zbl = {1401.49040},
     mrnumber = {3834440},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2018003/}
}
TY  - JOUR
AU  - Janon, Alexandre
AU  - Nodet, Maëlle
AU  - Prieur, Christophe
AU  - Prieur, Clémentine
TI  - Goal-oriented error estimation for parameter-dependent nonlinear problems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 705
EP  - 728
VL  - 52
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2018003/
DO  - 10.1051/m2an/2018003
LA  - en
ID  - M2AN_2018__52_2_705_0
ER  - 
%0 Journal Article
%A Janon, Alexandre
%A Nodet, Maëlle
%A Prieur, Christophe
%A Prieur, Clémentine
%T Goal-oriented error estimation for parameter-dependent nonlinear problems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 705-728
%V 52
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2018003/
%R 10.1051/m2an/2018003
%G en
%F M2AN_2018__52_2_705_0
Janon, Alexandre; Nodet, Maëlle; Prieur, Christophe; Prieur, Clémentine. Goal-oriented error estimation for parameter-dependent nonlinear problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 2, pp. 705-728. doi : 10.1051/m2an/2018003. http://archive.numdam.org/articles/10.1051/m2an/2018003/

[1] M. Barrault, Y. Maday, N.C. Nguyen and A.T. Patera, An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. Acad. Sci. Paris 339 (2004) 667–672. | DOI | MR | Zbl

[2] R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. (2001) 10 1–102. | DOI | MR | Zbl

[3] T. Bui-Thanh, K. Willcox, O. Ghattas and B. Van Bloemen Waanders, Goal-oriented, model-constrained optimization for reduction of large-scale systems. J. Comput. Phys. 224 (2007) 880–896. | DOI | MR | Zbl

[4] S. Chaturantabut and D.C. Sorensen, Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32 (2010) 2737–2764. | DOI | MR | Zbl

[5] M. Drohmann and K. Carlberg, The ROMES method for statistical modeling of reduced-order-model error. SIAM/ASA J. Uncertain. Quantif. 3 (2015) 116–145. | DOI | MR | Zbl

[6] R.G. Ghanem and P.D. Spanos, Stochastic Finite Elements: A Spectral Approach. Springer-Verlag, New York (1991). | DOI | MR | Zbl

[7] M. Ilak and C. Rowley, Modeling of transitional channel flow using balanced proper orthogonal decomposition. Phys. Fluids 20 (2008) 034103. | DOI | Zbl

[8] A. Janon, M. Nodet and C. Prieur, Certified reduced-basis solutions of viscous Burgers equations parametrized by initial and boundary values. ESAIM: M2AN 47 (2013) 317–348. | DOI | Numdam | MR | Zbl

[9] A. Janon, M. Nodet and C. Prieur, Goal-oriented error estimation for the reduced basis method, with application to sensitivity analysis. J. Sci. Comput. 68 (2016) 21–41. | DOI | MR | Zbl

[10] A. Janon, M. Nodet, C. Prieur and C. Prieur, Global sensitivity analysis for the boundary control of an open channel. Math. Control Signals Syst. 28 (2016) 1–27. | DOI | MR | Zbl

[11] J. Kleijnen, Design and Analysis of Simulation Experiments. Springer Publishing Company, Inc. (2007). | MR | Zbl

[12] J. Kleijnen, Simulation experiments in practice: statistical design and regression analysis. J. Simul. 2 (2008) 19–27. | DOI

[13] O.P. Le Maître, O.M. Knio, B.J. Debusschere, H.N. Najm and R.G. Ghanem, A multigrid solver for two-dimensional stochastic diffusion equations. Comput. Methods Appl. Mech. Eng. 192 (2003) 4723–4744. | DOI | MR | Zbl

[14] Y. Maday, A. Patera and D. Rovas, A blackbox reduced-basis output bound method for noncoercive linear problems, in Nonlinear Partial Differential Equations and their Applications Collège de France Seminar Volume XIV, edited by D. Cioranescu and J.-L. Lions. Vol. 31 of Studies in Mathematics and Its Applications. Elsevier (2002) 533–569. | DOI | MR | Zbl

[15] B. Moore, Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control 26 (1981) 17–31. | DOI | MR | Zbl

[16] N. Nguyen, K. Veroy and A. Patera, Certified real-time solution of parametrized partial differential equations, in Handbook of Materials Modeling. Springer (2005) 1523–1558.

[17] N. Nguyen, G. Rozza and A. Patera, Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers’ equation. Calcolo 46 (2009) 157–185. | DOI | MR | Zbl

[18] A. Nouy, Low-Rank Tensor Methods for Model Order Reduction. To appear in: Handbook of Uncertainty Quantification (2016) 1–26. DOI: | DOI | MR

[19] T. Santner, B. Williams and W. Notz, The Design and Analysis of Computer Experiments. Springer-Verlag, New York (2003) 283. | MR | Zbl

[20] J.M.A. Scherpen and W.S. Gray, Nonlinear Hilbert adjoints: properties and applications to Hankel singular value analysis. Nonlinear Anal. 51 (2002) 883–901. | DOI | MR | Zbl

[21] M. Scheuerer, R. Schaback and M. Schlather, Interpolation of spatial data – a stochastic or a deterministic problem? Eur. J. Appl. Math. 24 (2013) 601–629. | DOI | MR | Zbl

[22] L. Sirovich, Turbulence and the dynamics of coherent structures. Part I & II. Quart. Appl. Math. 45 (1987) 561–590. | DOI | MR | Zbl

[23] C. Soize and R. Ghanem, Physical systems with random uncertainties: chaos representations with arbitrary probability measure. SIAM J. Sci. Comput. 26 (2004) 395–410. | DOI | MR | Zbl

[24] K. Veroy,C. Prud’Homme and A. Patera, Reduced-basis approximation of the viscous Burgers equation: rigorous a posteriori error bounds. C. R. Math. Acad. Sci. Paris 337 (2003) 619–624. | DOI | MR | Zbl

[25] S. Volkwein, Proper Orthogonal Decomposition and Singular Value Decomposition. Spezialforschungsbereich F003 Optimierung und Kontrolle, Projektbereich Kontinuierliche Optimierung und Kontrolle, Bericht. Nr. 153, Graz (1999).

[26] K. Willcox and J. Peraire, Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40 (2002) 2323–2330. | DOI

[27] M. Yano and A.T. Patera, A space–time variational approach to hydrodynamic stability theory, in Vol. 469 of Proc. R. Soc. A. The Royal Society (2013) 20130036. | DOI | MR | Zbl

[28] M. Yano, A.T. Patera and K. Urban, A space-time hp-interpolation-based certified reduced basis method for Burgers’ equation. Math. Model. Methods Appl. Sci. 24 (2014) 1903–1935. | DOI | MR | Zbl

[29] D. Zupanski and M. Zupanski, Model error estimation employing an ensemble data assimilation approach. Mon. Weather Rev. 134 (2006) 1337–1354. | DOI

Cité par Sources :