A multiscale method for semi-linear elliptic equations with localized uncertainties and non-linearities
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 5, pp. 1763-1802.

A multiscale numerical method is proposed for the solution of semi-linear elliptic stochastic partial differential equations with localized uncertainties and non-linearities, the uncertainties being modeled by a set of random parameters. It relies on a domain decomposition method which introduces several subdomains of interest (called patches) containing the different sources of uncertainties and non-linearities. An iterative algorithm is then introduced, which requires the solution of a sequence of linear global problems (with deterministic operators and uncertain right-hand sides), and non-linear local problems (with uncertain operators and/or right-hand sides) over the patches. Non-linear local problems are solved using an adaptive sampling-based least-squares method for the construction of sparse polynomial approximations of local solutions as functions of the random parameters. Consistency, convergence and robustness of the algorithm are proved under general assumptions on the semi-linear elliptic operator. A convergence acceleration technique (Aitken’s dynamic relaxation) is also introduced to speed up the convergence of the algorithm. The performances of the proposed method are illustrated through numerical experiments carried out on a stationary non-linear diffusion-reaction problem.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2018025
Classification : 35R60, 60H15, 65N30, 65N55, 65D15
Mots-clés : Uncertainty quantification, non-linear elliptic stochastic partial differential equation, multiscale, domain decomposition, sparse approximation
Nouy, Anthony 1 ; Pled, Florent 1

1
@article{M2AN_2018__52_5_1763_0,
     author = {Nouy, Anthony and Pled, Florent},
     title = {A multiscale method for semi-linear elliptic equations with localized uncertainties and non-linearities},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1763--1802},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {5},
     year = {2018},
     doi = {10.1051/m2an/2018025},
     zbl = {1479.35971},
     mrnumber = {3878605},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2018025/}
}
TY  - JOUR
AU  - Nouy, Anthony
AU  - Pled, Florent
TI  - A multiscale method for semi-linear elliptic equations with localized uncertainties and non-linearities
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 1763
EP  - 1802
VL  - 52
IS  - 5
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2018025/
DO  - 10.1051/m2an/2018025
LA  - en
ID  - M2AN_2018__52_5_1763_0
ER  - 
%0 Journal Article
%A Nouy, Anthony
%A Pled, Florent
%T A multiscale method for semi-linear elliptic equations with localized uncertainties and non-linearities
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 1763-1802
%V 52
%N 5
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2018025/
%R 10.1051/m2an/2018025
%G en
%F M2AN_2018__52_5_1763_0
Nouy, Anthony; Pled, Florent. A multiscale method for semi-linear elliptic equations with localized uncertainties and non-linearities. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 5, pp. 1763-1802. doi : 10.1051/m2an/2018025. http://archive.numdam.org/articles/10.1051/m2an/2018025/

[1] O. Allix, L. Gendre, P. Gosselet and G. Guguin, Non-intrusive coupling: an attempt to merge industrial and research software capabilities, in Chapter 15 of Recent Developments and Innovative Applications in Computational Mechanics, edited by D. Mueller-Hoeppe, S. Loehnert and S. Reese. Springer, Berlin, Heidelberg (2011) 125–133. | DOI

[2] D.G. Aronson and H.F. Weinberger, Nonlinear Diffusion in Population Genetics, Combustion, and Nerve Pulse Propagation. Springer Berlin Heidelberg, Berlin, Heidelberg (1975) 5–49. | MR | Zbl

[3] B.V. Asokan and N. Zabaras, A stochastic variational multiscale method for diffusion in heterogeneous random media. J. Comput. Phys. 218 (2006) 654–676. | DOI | MR | Zbl

[4] K. Atkinson and W. Han, Theoretical Numerical Analysis: A Functional Analysis Framework, Vol. 39. Springer (2009). | MR | Zbl

[5] M.S. Bartlett, An inverse matrix adjustment arising in discriminant analysis. Ann. Math. Stat. 22 (1951) 107–111. | DOI | MR | Zbl

[6] A.D. Bazykin, Hypothetical mechanism of speciation. Evolution 23 (1969) 685–687.

[7] T. Belytschko and T. Black, Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45 (1999) 601–620. | DOI | Zbl

[8] F. Ben Belgacem The mortar finite element method with Lagrange multipliers. Numer. Math. 84 (1999) 173–197. | DOI | MR | Zbl

[9] G. Blatman and B. Sudret, Adaptive sparse polynomial chaos expansion based on least angle regression. J. Comput. Phys. 230 (2011) 2345–2367. | DOI | MR | Zbl

[10] B.H. Bradshaw-Hajek and P. Broadbridge, A robust cubic reaction-diffusion system for gene propagation. Math. Comput. Model. 39 (2004) 1151–1163. | DOI | MR | Zbl

[11] F. Brezzi, J.-L. Lions and O. Pironneau, Analysis of a Chimera method. C. R. Acad. Sci. Ser. I – Math. 332 (2001) 655–660. | MR | Zbl

[12] C. Canuto and T. Kozubek, A fictitious domain approach to the numerical solution of PDEs in stochastic domains. Numer. Math. 107 (2007) 257. | DOI | MR | Zbl

[13] G.C. Cawley and N.L.C. Talbot, Fast exact leave-one-out cross-validation of sparse least-squares support vector machines. Neural Netw. 17 (2004) 1467–1475. | DOI | Zbl

[14] L. Chamoin, J.T. Oden and S. Prudhomme, A stochastic coupling method for atomic-to-continuum Monte-Carlo simulations. Comput. Methods Appl. Mech. Eng. 197 (2008) 3530–3546. | DOI | MR | Zbl

[15] O. Chapelle, V. Vapnik and Y. Bengio, Model selection for small sample regression. Mach. Learn. 48 (2002) 9–23. | DOI | Zbl

[16] M. Chevreuil, A. Nouy and E. Safatly, A multiscale method with patch for the solution of stochastic partial differential equationswith localized uncertainties. Comput. Methods Appl. Mech. Eng. 255 (2013) 255–274. | DOI | MR | Zbl

[17] A. Chkifa, A. Cohen, R. Devore and C. Schwab, Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs. ESAIM: M2AN 47 (2013) 253–280. | DOI | Numdam | MR | Zbl

[18] A. Chkifa, A. Cohen, G. Migliorati, F. Nobile and R. Tempone, Discrete least squares polynomial approximation with random evaluations – application to parametric and stochastic elliptic PDEs. ESAIM: M2AN 49 (2015) 815–837. | DOI | Numdam | MR | Zbl

[19] R. Cottereau, D. Clouteau, H. Ben Dhia and C. Zaccardi, A stochastic-deterministic coupling method for continuum mechanics. Comput. Methods Appl. Mech. Eng. 200 (2011) 3280–3288. | DOI | MR | Zbl

[20] H.B. Dhia, Problèmes mécaniques multi-échelles: la méthode Arlequin – multiscale mechanical problems: the Arlequin method. C. R. Acad. Sci. Ser. IIB – Mech.-Phys.-Astron. 326 (1998) 899–904. | Zbl

[21] P. Dostert, Y. Efendiev and T.Y. Hou, Multiscale finite element methods for stochastic porous media flow equations and application to uncertainty quantification. Comput. Methods Appl. Mech. Eng. 197 (2008) 3445–3455. | DOI | MR | Zbl

[22] M. Duval, J.-C. Passieux, M. Salaün and S. Guinard, Non-intrusive coupling: recent advances and scalable nonlinear domain decomposition. Arch. Comput. Methods Eng. 23 (2016) 17–38. | DOI | MR | Zbl

[23] B.F. Edwards, Poiseuille advection of chemical reaction fronts. Phys. Rev. Lett. 89 (2002) 104501. | DOI

[24] Y. Efendiev and T.Y. Hou, Multiscale Finite Element Methods: Theory and Applications. Vol. 4 of Surveys and Tutorials in the Applied Mathematical Sciences. Springer-Verlag, New York (2009). | MR | Zbl

[25] Y. Efendiev, T.Y. Hou and V. Ginting, Multiscale finite element methods for nonlinear problems and their applications. Commun. Math. Sci. 2 (2004) 553–589. | DOI | MR | Zbl

[26] B. Ganapathysubramanian and N. Zabaras, Modeling diffusion in random heterogeneous media: data-driven models, stochastic collocation and the variational multiscale method. J. Comput. Phys. 226 (2007) 326–353. | DOI | MR | Zbl

[27] B. Ganapathysubramanian and N. Zabaras, A stochastic multiscale framework for modeling flow through random heterogeneous porous media. J. Comput. Phys. 228 (2009) 591–618. | DOI | MR | Zbl

[28] B. Ganis, I. Yotov and M. Zhong, A stochastic mortar mixed finite element method for flow in porous media with multiple rock types. SIAM J. Sci. Comput. 33 (2011) 1439–1474. | DOI | MR | Zbl

[29] L. Gendre, O. Allix, P. Gosselet and F. Comte, Non-intrusive and exact global/local techniques for structural problems with local plasticity. Comput. Mech. 44 (2009) 233–245. | DOI | MR | Zbl

[30] L. Gendre, O. Allix and P. Gosselet, A two-scale approximation of the Schur complement and its use for non-intrusive coupling. Int. J. Numer. Methods Eng. 87 (2011) 889–905. | DOI | MR | Zbl

[31] V. Ginting, A. Målqvist and M. Presho, A novel method for solving multiscale elliptic problems with randomly perturbed data. Multiscale Model. Simul. 8 (2010) 977–996. | DOI | MR | Zbl

[32] L. Giraldi, A. Litvinenko, D. Liu, H. Matthies and A. Nouy, To be or not to be intrusive? The solution of parametric and stochastic equations—the “Plain Vanilla” Galerkin case. SIAM J. Sci. Comput. 36 (2014) A2720–A2744. | DOI | MR | Zbl

[33] L. Giraldi, D. Liu, H.G. Matthies and A. Nouy, To be or not to be intrusive? The solution of parametric and stochastic equations—proper generalized decomposition. SIAM J. Sci. Comput. 37 (2015) A347–A368. | DOI | MR | Zbl

[34] R. Glowinski, J. He, A. Lozinski, J. Rappaz and J. Wagner, Finite element approximation of multi-scale elliptic problems using patches of elements. Numer. Math. 101 (2005) 663–687. | DOI | MR | Zbl

[35] A. Gravouil, J. Rannou and M.-C. Baïetto, A local multi-grid X-FEM approach for 3D fatigue crack growth. Int. J. Mater. Form. 1 (2008) 1103–1106. | DOI

[36] C. Hager, P. Hauret, P. Le Tallec and B.I. Wohlmuth, Solving dynamic contact problems with local refinement in space and time. Comput. Methods Appl. Mech. Eng. 201–204 (2012) 25–41. | DOI | MR | Zbl

[37] A. Hanna, A. Saul and K. Showalter, Detailed studies of propagating fronts in the iodate oxidation of arsenous acid. J. Am. Chem. Soc. 104 (1982) 3838–3844. | DOI

[38] J. He, A. Lozinski and J. Rappaz, Accelerating the method of finite element patches using approximately harmonic functions. C. R. Math. 345 (2007) 107–112. | DOI | MR | Zbl

[39] P. Henning and M. Ohlberger, Error control and adaptivity for heterogeneous multiscale approximations of nonlinear monotone problems. Discrete Contin. Dyn. Syst. – Ser. S 8 (2015) 119–150. | MR | Zbl

[40] P. Henning, A. Målqvist and D. Peterseim, A localized orthogonal decomposition method for semi-linear elliptic problems. ESAIM: M2AN 48 (2014) 1331–1349. | DOI | Numdam | MR | Zbl

[41] T.Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169–189. | DOI | MR | Zbl

[42] J. Huang and B.F. Edwards, Pattern formation and evolution near autocatalytic reaction fronts in a narrow vertical slab. Phys. Rev. E 54 (1996) 2620–2627. | DOI

[43] T.J.R. Hughes, G.R. Feijóo, L. Mazzei and J.-B. Quincy, The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166 (1998) 3–24, Advances in Stabilized Methods in Computational Mechanics. | DOI | MR | Zbl

[44] B.M. Irons and R.C. Tuck, A version of the Aitken accelerator for computer iteration. Int. J. Numer. Methods Eng. 1 (1969) 275–277. | DOI | Zbl

[45] C. Jin, X. Cai and C. Li, Parallel domain decomposition methods for stochastic elliptic equations. SIAM J. Sci. Comput. 29 (2007) 2096–2114. | DOI | MR | Zbl

[46] M. Kærn and M. Menzinger, Propagation of excitation pulses and autocatalytic fronts in packed-bed reactors. J. Phys. Chem. B 106 (2002) 3751–3758. | DOI

[47] C. Kim, R. Lazarov, J. Pasciak and P. Vassilevski, Multiplier spaces for the mortar finite element method in three dimensions. SIAM J. Numer. Anal. 39 (2001) 519–538. | DOI | MR | Zbl

[48] I.V. Koptyug, V.V. Zhivonitko and R.Z. Sagdeev, Advection of chemical reaction fronts in a porous medium. J. Phys. Chem. B 112 (2008) 1170–1176. | DOI

[49] U. Küttler and W.A. Wall, Fixed-point fluid–structure interaction solvers with dynamic relaxation. Comput. Mech. 43 (2008) 61–72. | DOI | Zbl

[50] M. Leconte, J. Martin, N. Rakotomalala and D. Salin, Pattern of reaction diffusion fronts in laminar flows. Phys. Rev. Lett. 90 (2003) 128302. | DOI

[51] C. Le Bris, F. Legoll and F. Thomines, Multiscale finite element approach for “weakly” random problems and related issues. ESAIM: M2AN 48 (2014) 815–858. | DOI | Numdam | MR | Zbl

[52] O.P. Le Maître and O.M. Knio, Spectral Methods for Uncertainty Quantification With Applications to Computational Fluid Dynamics. Springer, Netherlands (2010). | DOI | MR | Zbl

[53] J.-L. Lions and O. Pironneau, Domain decomposition methods for CAD. C. R. Acad. Sci. Ser. I – Math. 328 (1999) 73–80. | MR | Zbl

[54] Y.J. Liu, Q. Sun and X.L. Fan, A non-intrusive global/local algorithm with non-matching interface: derivation and numerical validation. Comput. Methods Appl. Mech. Eng. 277 (2014) 81–103. | DOI

[55] A. Lozinski, Méthodes numériques et modélisation pour certains problèmes multi-échelles. Habilitation à diriger des recherches, Université Paul Sabatier, Toulouse 3, France (2010).

[56] A.J. Macleod, Acceleration of vector sequences by multi-dimensional ∆2 methods. Commun. Appl. Numer. Methods 2 (1986) 385–392. | DOI | Zbl

[57] H.G. Matthies and A. Keese, Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 194 (2005) 1295–1331. | DOI | MR | Zbl

[58] N. Moës, J. Dolbow and T. Belytschko, A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46 (1999) 131–150. | DOI | MR | Zbl

[59] V.A.B. Narayanan and N. Zabaras, Variational multiscale stabilized FEM formulations for transport equations: stochastic advection–diffusion and incompressible stochastic Navier–Stokes equations. J. Comput. Phys. 202 (2005) 94–133. | DOI | MR | Zbl

[60] J.M. Nordbotten, Variational and Heterogeneous Multiscale Methods. Springer Berlin Heidelberg, Berlin, Heidelberg (2010) 713–720. | Zbl

[61] A. Nouy, Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations. Arch. Comput. Methods Eng. 16 (2009) 251–285. | DOI | MR | Zbl

[62] A. Nouy, A. Clément, F. Schoefs and N. Moës, An extended stochastic finite element method for solving stochastic partial differential equations on random domains. Comput. Methods Appl. Mech. Eng. 197 (2008) 4663–4682. | DOI | MR | Zbl

[63] A. Nouy, M. Chevreuil and E. Safatly, Fictitious domain method and separated representations for the solution of boundary value problems on uncertain parameterized domains. Comput. Methods Appl. Mech. Eng. 200 (2011) 3066–3082. | DOI | MR | Zbl

[64] J.C. Passieux, A. Gravouil, J. Réthoré and M.C. Baïetto, Direct estimation of generalized stress intensity factors using a three-scale concurrent multigrid X-FEM. Int. J. Numer. Methods Eng. 85 (2011) 1648–1666. | DOI | MR | Zbl

[65] J.-C. Passieux, J. Réthoré, A. Gravouil and M.-C. Baïetto, Local/global non-intrusive crack propagation simulation using a multigrid X-FEM solver. Comput. Mech. 52 (2013) 1381–1393. | DOI

[66] O. Pironneau, A. Lozinski, A. Perronnet and F. Hecht, Numerical zoom for multiscale problems with an application to flows through porous media. Discrete Contin. Dyn. Syst. A 23 (2009) 265–280. | MR | Zbl

[67] J. Rannou, A. Gravouil and M.C. Baïetto-Dubourg, A local multigrid X-FEM strategy for 3-D crack propagation. Int. J. Numer. Methods Eng. 77 (2009) 581–600. | DOI | MR | Zbl

[68] T. Roubíček, Nonlinear Partial Differential Equations With Applications, Vol. 153. Springer (2005). | MR | Zbl

[69] S. Saha, S. Atis, D. Salin and L. Talon, Phase diagram of sustained wave fronts opposing the flow in disordered porous media. EPL (Europhys. Lett.) 101 (2013) 38003. | DOI

[70] A. Sarkar, N. Benabbou and R. Ghanem, Domain decomposition of stochastic PDEs: theoretical formulations. Int. J. Numer. Methods Eng. 77 (2009) 689–701. | DOI | MR | Zbl

[71] R.S. Spangler and B.F. Edwards, Poiseuille advection of chemical reaction fronts: eikonal approximation. J. Chem. Phys. 118 (2003) 5911–5915. | DOI

[72] J.L. Steger, F.C. Dougherty and J.A. Benek, A Chimera grid scheme, in Advances in Grid Generation, Vol. 5, edited by K.N. Ghia and U. Ghia. American Society of Mechanical Engineers, FED, New York (1983) 59–69.

[73] E. Stein and S. Ohnimus, Coupled model- and solution-adaptivity in the finite-element method. Comput. Methods Appl. Mech. Eng. 150 (1997) 327–350. | DOI | MR | Zbl

[74] T. Strouboulis, I. Babuška and K. Copps, The design and analysis of the Generalized Finite Element Method. Comput. Methods Appl. Mech. Eng. 181 (2000) 43–69. | DOI | MR | Zbl

[75] B. Sudret, Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93 (2008) 964–979. | DOI

[76] D.M. Tartakovsky and D. Xiu, Stochastic analysis of transport in tubes with rough walls. J. Comput. Phys. 217 (2006) 248–259, Uncertainty Quantification in Simulation Science. | DOI | MR | Zbl

[77] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-refinement Techniques. Wiley-Teubner, Stuttgart (1996). | Zbl

[78] E. Weinan and B. Engquist, The heterogeneous multiscale methods. Commun. Math. Sci. 1 (2003) 87–132. | DOI | MR | Zbl

[79] M.F. Wheeler, T. Wildey and I. Yotov, A multiscale preconditioner for stochastic mortar mixed finite elements. Comput. Methods Appl. Mech. Eng. 200 (2011) 1251–1262. | DOI | MR | Zbl

[80] B.I. Wohlmuth, Discretization Methods and Iterative Solvers Based on Domain Decomposition. Vol. 17 of Lecture Notes in Computational Science and Engineering. Springer, Berlin, New York (2001). | MR | Zbl

[81] D. Xiu, Fast numerical methods for stochastic computations: a review. Commun. Comput. Phys. 5 (2009) 242–272. | MR | Zbl

[82] D. Xiu and D.M. Tartakovsky, Numerical methods for differential equations in random domains. SIAM J. Sci. Comput. 28 (2006) 1167–1185. | DOI | MR | Zbl

[83] X.F. Xu, A multiscale stochastic finite element method on elliptic problems involving uncertainties. Comput. Methods Appl. Mech. Eng. 196 (2007) 2723–2736. | DOI | MR | Zbl

[84] X.F. Xu, X. Chen and L. Shen, A Green-function-based multiscale method for uncertainty quantification of finite body random heterogeneous materials. Comput. Struct. 87 (2009) 1416–1426. | DOI

[85] K. Zhang, R. Zhang, Y. Yin and S. Yu, Domain decomposition methods for linear and semilinear elliptic stochastic partial differential equations. Appl. Math. Comput. 195 (2008) 630–640. | DOI | MR | Zbl

Cité par Sources :