Outgoing wave conditions in photonic crystals and transmission properties at interfaces
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 5, pp. 1913-1945.

We analyze the propagation of waves in unbounded photonic crystals. Waves are described by a Helmholtz equation with x-dependent coefficients, the scattering problem must be completed with a radiation condition at infinity. We develop an outgoing wave condition with the help of a Bloch wave expansion. Our radiation condition admits a uniqueness result, formulated in terms of the Bloch measure of solutions. We use the new radiation condition to analyze the transmission problem where, at fixed frequency, a wave hits the interface between free space and a photonic crystal. We show that the vertical wave number of the incident wave is a conserved quantity. Together with the frequency condition for the transmitted wave, this condition leads (for appropriate photonic crystals) to the effect of negative refraction at the interface.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2018026
Classification : 35Q60, 35P25, 35B27
Mots-clés : Helmholtz equation, radiation, waveguide, Bloch analysis, outgoing wave condition, photonic crystal, transmission problem, negative refraction
Lamacz, A. 1 ; Schweizer, B. 1

1
@article{M2AN_2018__52_5_1913_0,
     author = {Lamacz, A. and Schweizer, B.},
     title = {Outgoing wave conditions in photonic crystals and transmission properties at interfaces},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1913--1945},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {5},
     year = {2018},
     doi = {10.1051/m2an/2018026},
     mrnumber = {3885700},
     zbl = {1414.35222},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2018026/}
}
TY  - JOUR
AU  - Lamacz, A.
AU  - Schweizer, B.
TI  - Outgoing wave conditions in photonic crystals and transmission properties at interfaces
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 1913
EP  - 1945
VL  - 52
IS  - 5
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2018026/
DO  - 10.1051/m2an/2018026
LA  - en
ID  - M2AN_2018__52_5_1913_0
ER  - 
%0 Journal Article
%A Lamacz, A.
%A Schweizer, B.
%T Outgoing wave conditions in photonic crystals and transmission properties at interfaces
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 1913-1945
%V 52
%N 5
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2018026/
%R 10.1051/m2an/2018026
%G en
%F M2AN_2018__52_5_1913_0
Lamacz, A.; Schweizer, B. Outgoing wave conditions in photonic crystals and transmission properties at interfaces. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 5, pp. 1913-1945. doi : 10.1051/m2an/2018026. http://archive.numdam.org/articles/10.1051/m2an/2018026/

[1] G. Allaire and C. Conca, Bloch wave homogenization and spectral asymptotic analysis. J. Math. Pure Appl. 77 (1998) 153–208. | DOI | MR | Zbl

[2] G. Allaire, M. Palombaro and J. Rauch, Diffractive behavior of the wave equation in periodic media: weak convergence analysis. Ann. Mat. Pura Appl. 188 (2009) 561–589. | DOI | MR | Zbl

[3] G. Allaire, M. Palombaro and J. Rauch, Diffractive geometric optics for Bloch wave packets. Arch. Ration. Mech. Anal. 202 (2011) 373–426. | DOI | MR | Zbl

[4] H. Ammari and F. Santosa, Guided waves in a photonic bandgap structure with a line defect. SIAM J. Appl. Math. 64 (2004) 2018–2033. | DOI | MR | Zbl

[5] H. Ammari, N. Béreux and E. Bonnetier, Analysis of the radiation properties of a planar antenna on a photonic crystal substrate. Math. Methods Appl. Sci. 24 (2001) 1021–1042. | DOI | MR | Zbl

[6] A.-S. Bonnet-Ben Dhia, G. Dakhia, C. Hazard and L. Chorfi, Diffraction by a defect in an open waveguide: a mathematical analysis based on a modal radiation condition. SIAM J. Appl. Math. 70 (2009) 677–693. | DOI | MR | Zbl

[7] G. Bouchitté and D. Felbacq, Negative refraction in periodic and random photonic crystals. New J. Phys. 7 (2005).

[8] G. Bouchitté and B. Schweizer, Homogenization of Maxwell’s equations in a split ring geometry. Multiscale Model. Simul. 8 (2010) 717–750. | DOI | MR | Zbl

[9] Y. Chen and R. Lipton, Tunable double negative band structure from non-magnetic coated rods. New J. Phys. 12 (2010) 083010. | DOI

[10] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory. Vol. 93 of Applied Mathematical Sciences, 2nd edn. Springer-Verlag, Berlin (1998). | MR | Zbl

[11] T. Dohnal and B. Schweizer, A Bloch wave numerical scheme for scattering problems in periodic wave-guides. SIAM J. Numer. Anal. 56 (2018) 1848–1870. | DOI | MR | Zbl

[12] A. Efros and A. Pokrovsky, Dielectric photonic crystal as medium with negative electric permittivity and magnetic permeability. Solid State Commun. 129 (2004) 643–647. | DOI

[13] A. Figotin and A. Klein, Midgap defect modes in dielectric and acoustic media. SIAM J. Appl. Math. 58 (1998) 1748–1773. | DOI | MR | Zbl

[14] S. Fliss, A Dirichlet-to-Neumann approach for the exact computation of guided modes in photonic crystal waveguides. SIAM J. Sci. Comput. 35 (2013) B438–B461. | DOI | MR | Zbl

[15] S. Fliss and P. Joly, Wave propagation in locally perturbed periodic media (case with absorption): numerical aspects. J. Comput. Phys. 231 (2012) 1244–1271. | DOI | MR | Zbl

[16] S. Fliss and P. Joly, Solutions of the time-harmonic wave equation in periodic waveguides: asymptotic behaviour and radiation condition. Arch. Ration. Mech. Anal. 219 (2016) 349–386. | DOI | MR | Zbl

[17] S. Fliss, D. Klindworth and K. Schmidt, Robin-to-Robin transparent boundary conditions for the computation of guided modes in photonic crystal wave-guides. BIT 55 (2015) 81–115. | DOI | MR | Zbl

[18] H. Helmholtz, Theorie der Luftschwingungen in Röhren mit offenen Enden. J. Reine Angew. Math. 57 (1860) 1–72. | MR | Zbl

[19] V. Hoang, The limiting absorption principle for a periodic semi-infinite waveguide. SIAM J. Appl. Math. 71 (2011) 791–810. | DOI | MR | Zbl

[20] V. Hoang and M. Radosz, Absence of bound states for waveguides in two-dimensional periodic structures. J. Math. Phys. 55 (2014) 033506. | DOI | MR | Zbl

[21] Z. Hu and Y.Y. Lu, Efficient analysis of photonic crystal devices by Dirichlet-to-Neumann maps. Opt. Express 16 (2008) 17383–17399. | DOI

[22] J. Joannopoulos, S. Johnson, J. Winn and R. Meade, Photonic Crystals – Molding the Flow of Light. Princeton University Press (2008). | Zbl

[23] P. Joly, An elementary introduction to the construction and the analysis of perfectly matched layers for time domain wave propagation. SeMA J. 57 (2012) 5–48. | DOI | MR | Zbl

[24] P. Joly, J.-R. Li and S. Fliss, Exact boundary conditions for periodic waveguides containing a local perturbation. Commun. Comput. Phys. 1 (2006). | Zbl

[25] A. Lamacz and B. Schweizer, Effective Maxwell equations in a geometry with flat rings of arbitrary shape. SIAM J. Math. Anal. 45 (2013) 1460–1494. | DOI | MR | Zbl

[26] A. Lamacz and B. Schweizer, A negative index meta-material for Maxwell’s equations. SIAM J. Math. Anal. 48 (2016) 4155–4174. | DOI | MR | Zbl

[27] C. Luo, S.G. Johnson, J.D. Joannopoulos and J.B. Pendry, All-angle negative refraction without negative effective index. Phys. Rev. B 65 (2002) 201104. | DOI

[28] R.D. Meade, K.D. Brommer, A.M. Rappe and J.D. Joannopoulos, Electromagnetic Bloch waves at the surface of a photonic crystal. Phys. Rev. B 44 (1991) 10961–10964. | DOI

[29] E. Moreno, F.J. García-Vidal and L. Martín-Moreno, Enhanced transmission and beaming of light via photonic crystal surface modes. Phys. Rev. B 69 (2004) 121402. | DOI

[30] J. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85 (2000). | DOI

[31] M. Radosz, New limiting absorption and limit amplitude principles for periodic operators. Z. Angew. Math. Phys. 66 (2015) 253–275. | DOI | MR | Zbl

[32] F. Rellich, Über das asymptotische Verhalten der Lösungen von Δu + λu = 0 in unendlichen Gebieten. Jber. Deutsch. Math. Verein. 53 (1943) 57–65. | MR | Zbl

[33] S.H. Schot, Eighty years of Sommerfeld’s radiation condition. Historia Math. 19 (1992) 385–401. | DOI | MR | Zbl

[34] B. Schweizer, The low-frequency spectrum of small Helmholtz resonators. Proc. A 471 (2015) 20140339. | MR | Zbl

[35] A. Sommerfeld, Die Greensche Funktion der Schwingungsgleichung. Jbr. Deutsch. Math.-Verein. 21 (1912) 309–353. | JFM

Cité par Sources :