Fully discrete finite element data assimilation method for the heat equation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 5, pp. 2065-2082.

We consider a finite element discretization for the reconstruction of the final state of the heat equation, when the initial data is unknown, but additional data is given in a sub domain in the space time. For the discretization in space we consider standard continuous affine finite element approximation, and the time derivative is discretized using a backward differentiation. We regularize the discrete system by adding a penalty on the H2-semi-norm of the initial data, scaled with the mesh-parameter. The analysis of the method uses techniques developed in E. Burman and L. Oksanen [Numer. Math. 139 (2018) 505–528], combining discrete stability of the numerical method with sharp Carleman estimates for the physical problem, to derive optimal error estimates for the approximate solution. For the natural space time energy norm, away from t = 0, the convergence is the same as for the classical problem with known initial data, but contrary to the classical case, we do not obtain faster convergence for the L2-norm at the final time.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2018030
Classification : 65M12, 65M15, 65M30, 65M32
Mots-clés : Heat equation, inverse problem, data assimilation, stabilized finite elements
Burman, Erik 1 ; Ish-Horowicz, Jonathan 1 ; Oksanen, Lauri 1

1
@article{M2AN_2018__52_5_2065_0,
     author = {Burman, Erik and Ish-Horowicz, Jonathan and Oksanen, Lauri},
     title = {Fully discrete finite element data assimilation method for the heat equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2065--2082},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {5},
     year = {2018},
     doi = {10.1051/m2an/2018030},
     mrnumber = {3893359},
     zbl = {1420.65124},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2018030/}
}
TY  - JOUR
AU  - Burman, Erik
AU  - Ish-Horowicz, Jonathan
AU  - Oksanen, Lauri
TI  - Fully discrete finite element data assimilation method for the heat equation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 2065
EP  - 2082
VL  - 52
IS  - 5
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2018030/
DO  - 10.1051/m2an/2018030
LA  - en
ID  - M2AN_2018__52_5_2065_0
ER  - 
%0 Journal Article
%A Burman, Erik
%A Ish-Horowicz, Jonathan
%A Oksanen, Lauri
%T Fully discrete finite element data assimilation method for the heat equation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 2065-2082
%V 52
%N 5
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2018030/
%R 10.1051/m2an/2018030
%G en
%F M2AN_2018__52_5_2065_0
Burman, Erik; Ish-Horowicz, Jonathan; Oksanen, Lauri. Fully discrete finite element data assimilation method for the heat equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 5, pp. 2065-2082. doi : 10.1051/m2an/2018030. http://archive.numdam.org/articles/10.1051/m2an/2018030/

[1] R.N. Bannister, A review of forecast error covariance statistics in atmospheric variational data assimilation. II: modelling the forecast error covariance statistics. Quaterly J. Roy. Meteorol. Soc. 134 (2008) 1971–1996. | DOI

[2] E. Bécache, L. Bourgeois, L. Franceschini and J. Dardé, Application of mixed formulations of quasi-reversibility to solve ill-posed problems for heat and wave equations: the 1D case. Inverse Probl. Imaging 9 (2015) 971–1002. | DOI | MR | Zbl

[3] F. Boyer, F. Hubert and J. Le Rousseau, Uniform controllability properties for space/time-discretized parabolic equations. Numer. Math. 118 (2011) 601–661. | DOI | MR | Zbl

[4] E. Burman, Stabilized finite element methods for nonsymmetric, noncoercive, and ill-posed problems. Part I: Elliptic equations. SIAM J. Sci. Comput. 35 (2013) A2752–A2780. | DOI | MR | Zbl

[5] E. Burman, Error estimates for stabilized finite element methods applied to ill-posed problems. C. R. Math. Acad. Sci. Paris 352 (2014) 655–659. | DOI | MR | Zbl

[6] E. Burman, Stabilised finite element methods for ill-posed problems with conditional stability, in Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Vol. 114 of Lect. Notes Comput. Sci. Eng. Springer, Cham (2016) 93–127. | MR | Zbl

[7] E. Burman and L. Oksanen, Data Assimilation for the Heat Equation Using Stabilized Finite Element Methods. Numer. Math. 139 (2016) 505–528. | DOI | MR | Zbl

[8] E. Burman, M.G. Larson and P. Hansbo, Solving ill-Posed Control Problems by Stabilized Finite Element Methods: An Alternative to Tikhonov Regularization. Technical report (2016) | MR

[9] C. Castro, N. Cîndea and A. Münch, Controllability of the linear one-dimensional wave equation with inner moving forces. SIAM J. Control Optim. 52 (2014) 4027–4056. | DOI | MR | Zbl

[10] N. Cîndea and A. Münch, Inverse problems for linear hyperbolic equations using mixed formulations. Inverse Probl. 31 (2015) 075001. | DOI | MR | Zbl

[11] N. Cîndea and A. Münch, A mixed formulation for the direct approximation of the control of minimal L2-norm for linear type wave equations. Calcolo 52 (2015) 245–288. | DOI | MR | Zbl

[12] N. Cîndea and A. Münch, Simultaneous reconstruction of the solution and the source of hyperbolic equations from boundary measurements: a robust numerical approach. Inverse Probl. 32 (2016) 115020. | DOI | MR | Zbl

[13] N. Cîndea, E. Fernández-Cara and A. Münch, Numerical controllability of the wave equation through primal methods and Carleman estimates. ESAIM: COCV. 19 (2013) 1076–1108. | Numdam | MR | Zbl

[14] P. Courtier et al., A strategy for operational implementation of 4D-Var, using an incremental approach. Quaterly J. Roy. Meteorol.Soc. 120 (1994) 1367–1387.

[15] O.Y. Èmanuilov, Controllability of parabolic equations. Mat. Sb. 186 (1995) 109–132. | MR | Zbl

[16] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Vol. 159 of Applied Mathematical Sciences. New York (2004). | DOI | MR | Zbl

[17] V. Isakovm, Inverse Problems For Partial Differential Equations, 2nd edn. Vol. 127 of Applied Mathematical Sciences. Springer, New York (2006). | MR | Zbl

[18] S.E. Jenkins, C.J. Budd, M.A. Freitag and N.D. Smith, The effect of numerical model error on data assimilation. J. Comput. Appl. Math. 290 (2015) 567–588. | DOI | MR | Zbl

[19] E. Jones,T. Oliphant, P. Peterson et al., SciPy: open source scientific tools for python (2001). Online; version 0.19.1 [accessed 19/07/17].

[20] M.V. Klibanov, Estimates of initial conditions of parabolic equations and inequalities via lateral Cauchy data. Inverse Probl. 22 (2006) 495–514. | DOI | MR | Zbl

[21] M.V. Klibanov, Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems. J. Inverse Ill-Posed Probl. 21 (2013) 477–560. | DOI | MR | Zbl

[22] M.V. Klibanov, Carleman estimates for the regularization of ill-posed Cauchy problems. Appl. Numer. Math. 94 (2015) 46–74. | DOI | MR | Zbl

[23] M.V. Klibanov and P.G. Danilaev, Solution of coefficient inverse problems by the method of quasi-reversibility. Dokl. Akad. Nauk SSSR 310 (1990) 528–532. | MR | Zbl

[24] R. Lattès and J.-L. Lions, Méthode de quasi-réversibilité et applications. Travaux et Recherches Mathématiques, No. 15. Dunod, Paris (1967). | MR | Zbl

[25] F.X. Le Dimet and O. Talagrand, Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus A 38 (1986) 97–110. | DOI

[26] J.-L. Lions, Équations différentielles opérationnelles et problèmes aux limites. Die Grundlehren der mathematischen Wissenschaften, Bd.111, Springer-Verlag, Berlin-Göttingen-Heidelberg (1961). | MR | Zbl

[27] A. Münch and D.A. Souza, A mixed formulation for the direct approximation of L2-weighted controls for the linear heat equation. Adv. Comput. Math. 42 (2016) 85–125. | DOI | MR | Zbl

[28] C.C. Paige and M.A. Saunders, Solutions of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12 (1975) 617–629. | DOI | MR | Zbl

[29] Y. Sasaki, Some basic formalisms in numerical variational analysis. Mon. Weather Rev. 98 (1970). | DOI

[30] M. Tadi, M.V. Klibanov and W. Cai, An inversion method for parabolic equations based on quasireversibility. Comput. Math. Appl. 43 (2002) 927–941. | DOI | MR | Zbl

[31] O. Talagrand, Initialisation d’un modèle numérique d’atmosphère à partir de données distribuées dans le temps, in Computing Methods in Applied Sciences and Engineering, in Proc. Third Internat. Sympos., Versailles, 1977, II. Vol. 91 of Lecture Notes in Physics. Springer, Berlin-New York (1979) 217–231. | MR | Zbl

[32] O. Talagrand, On the mathematics of data assimilation. Tellus 33 (1981) 321–339. | DOI | MR

[33] O. Talagrand and P. Courtier, Variational assimilation of meteorological observations with the adjoint vorticity equation. i: theory. Q. J. Royal Meteorol. Soc. 113 (1987) 1311–1328. | DOI

[34] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Vol. 25 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1997). | MR | Zbl

[35] Y.B. Wang, J. Cheng, J. Nakagawa and M. Yamamoto. A numerical method for solving the inverse heat conduction problem without initial value. Inverse Probl. Sci. Eng. 18 (2010) 655–671. | DOI | MR | Zbl

[36] M. Yamamoto, Carleman estimates for parabolic equations and applications. Inverse Probl. 25 123013 (2009). | DOI | MR | Zbl

Cité par Sources :