Optimized Schwarz methods for the coupling of cylindrical geometries along the axial direction
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1597-1615.

In this work, we focus on the Optimized Schwarz Method for circular flat interfaces and geometric heterogeneous coupling arising when cylindrical geometries are coupled along the axial direction. In the first case, we provide a convergence analysis for the diffusion-reaction problem and jumping coefficients and we apply the general optimization procedure developed in Gigante and Vergara (Numer. Math. 131 (2015) 369–404). In the numerical simulations, we discuss how to choose the range of frequencies in the optimization and the influence of the Finite Element and projection errors on the convergence. In the second case, we consider the coupling between a three-dimensional and a one-dimensional diffusion-reaction problem and we develop a new optimization procedure. The numerical results highlight the suitability of the theoretical findings.

DOI : 10.1051/m2an/2018039
Classification : 65N12, 65B99
Mots-clés : Optimized Schwarz Method, cylindrical domains, geometric multiscale, Bessel functions
Gigante, Giacomo 1 ; Vergara, Christian 2

1 Dipartimento di Ingegneria gestionale, dell’informazione e della produzione, Università degli Studi di Bergamo, Viale Marconi 5, 24044 Dalmine (BG), Italy
2 MOX, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
@article{M2AN_2018__52_4_1597_0,
     author = {Gigante, Giacomo and Vergara, Christian},
     title = {Optimized {Schwarz} methods for the coupling of cylindrical geometries along the axial direction},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1597--1615},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {4},
     year = {2018},
     doi = {10.1051/m2an/2018039},
     zbl = {1407.65260},
     mrnumber = {3878606},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2018039/}
}
TY  - JOUR
AU  - Gigante, Giacomo
AU  - Vergara, Christian
TI  - Optimized Schwarz methods for the coupling of cylindrical geometries along the axial direction
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 1597
EP  - 1615
VL  - 52
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2018039/
DO  - 10.1051/m2an/2018039
LA  - en
ID  - M2AN_2018__52_4_1597_0
ER  - 
%0 Journal Article
%A Gigante, Giacomo
%A Vergara, Christian
%T Optimized Schwarz methods for the coupling of cylindrical geometries along the axial direction
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 1597-1615
%V 52
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2018039/
%R 10.1051/m2an/2018039
%G en
%F M2AN_2018__52_4_1597_0
Gigante, Giacomo; Vergara, Christian. Optimized Schwarz methods for the coupling of cylindrical geometries along the axial direction. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1597-1615. doi : 10.1051/m2an/2018039. http://archive.numdam.org/articles/10.1051/m2an/2018039/

[1] S. Badia, F. Nobile and C. Vergara, Fluid-structure partitioned procedures based on Robin transmission conditions. J. Comput. Phys. 227 (2008) 7027–7051. | DOI | MR | Zbl

[2] P. Blanco, M. Discacciati and A. Quarteroni, Modeling dimensionally-heterogeneous problems: analysis, approximation and applications. Numer. Math. 119 (2011) 299–335. | DOI | MR | Zbl

[3] P.J. Blanco, S. Deparis and A.C.I. Malossi, On the continuity of mean total normal stress in geometrical multiscale cardiovascular problems. J. Comput. Phys. 51 (2013) 136–155. | DOI | MR | Zbl

[4] P.J. Blanco, R.A. Feijóo and S.A. Urquiza, A unified variational approach for coupling 3d–1d models and its blood flow applications. Comput. Methods Appl. Mech. Eng. 196 (2007) 4391–4410. | DOI | MR | Zbl

[5] V. Dolean, M.J. Gander and L. Gerardo Giorda, Optimized Schwarz Methods for Maxwell’s equations. SIAM J. Sci. Comput. 31 (2009) 2193–2213. | DOI | MR | Zbl

[6] V.J. Ervin and H. Lee, Numerical approximation of a quasi-newtonian Stokes flow problem with defective boundary conditions. SIAM J. Numer. Anal. 45 (2007) 2120–2140. | DOI | MR | Zbl

[7] L. Formaggia, J.-F. Gerbeau, F. Nobile and A. Quarteroni, On the coupling of 3D an 1D Navier–Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng. 191 (2001) 561–582. | DOI | MR | Zbl

[8] L. Formaggia, J.-F. Gerbeau, F. Nobile and A. Quarteroni, Numerical treatment of defective boundary conditions for the Navier–Stokes equation. SIAM J. Numer. Anal. 40 (2002) 376–401. | DOI | MR | Zbl

[9] L. Formaggia, A. Moura and F. Nobile, On the stability of the coupling of 3D and 1D fluid-structure interaction models for blood flow simulations. ESAIM: M2AN 41 (2007) 743–769. | DOI | Numdam | MR | Zbl

[10] L. Formaggia, A. Quarteroni and C. Vergara, On the physical consistency between three-dimensional and one-dimensional models in haemodynamics. J. Comput. Phys. 244 (2013) 97–112. | DOI | MR | Zbl

[11] L. Formaggia, A. Veneziani and C. Vergara, A new approach to numerical solution of defective boundary value problems in incompressible fluid dynamics. SIAM J. Numer. Anal. 46 (2008) 2769–2794. | DOI | MR | Zbl

[12] L. Formaggia, A. Veneziani and C. Vergara, Flow rate boundary problems for an incompressible fluid in deformable domains: formulations and solution methods. Comput. Methods Appl. Mech. Eng. 199 (2009) 677–688. | DOI | MR | Zbl

[13] L. Formaggia and C. Vergara, Prescription of general defective boundary conditions in fluid-dynamics. Milan J. Math. 80 (2012) 333–350. | DOI | MR | Zbl

[14] K. Galvin and H. Lee, Analysis and approximation of the cross model for quasi-newtonian flows with defective boundary conditions. Appl. Math. Comp. 222 (2013) 244–254. | DOI | MR | Zbl

[15] K. Galvin, H. Lee and L.G. Rebholz, Approximation of viscoelastic flows with defective boundary conditions. J. Non Newt. Fl. Mech. 169–170 (2012) 104–113. | DOI

[16] M.J. Gander, Optimized Schwarz methods. SIAM J. Numer. Anal. 44 (2006) 699–731. | DOI | MR | Zbl

[17] M.J. Gander, F. Magoulès and F. Nataf, Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput. 24 (2002) 38–60. | DOI | MR | Zbl

[18] M.J. Gander and Y. Xu, Optimized Schwarz methods for circular domain decompositions with overlap. SIAM J. Numer. Anal. 52 (2014) 1981–2004. | DOI | MR | Zbl

[19] M.J. Gander and Y. Xu, Optimized Schwarz Methods with nonoverlapping circular domain decomposition. Math. Comp. 86 (2017) 637–660. | DOI | MR | Zbl

[20] L. Gerardo Giorda, F. Nobile and C. Vergara, Analysis and optimization of Robin–Robin partitioned procedures in fluid-structure interaction problems. SIAM J. Numer. Anal. 48 (2010) 2091–2116. | DOI | MR | Zbl

[21] G. Gigante, M. Pozzoli and C. Vergara, Optimized Schwarz methods for the diffusion-reaction problem with cylindrical interfaces. SIAM J. Numer. Anal. 51 (2013) 3402–3420. | DOI | MR | Zbl

[22] G. Gigante and C. Vergara, Analysis and optimization of the generalized Schwarz method for elliptic problems with application to fluid-structure interaction. Numer. Math. 131 (2015) 369–404. | DOI | MR | Zbl

[23] G. Gigante and C. Vergara, Optimized Schwarz method for the fluid-structure interaction with cylindrical interfaces, edited by T. Dickopf, M.J. Gander, L. Halpern, R. Krause and L.F. Pavarino. In: Proc. of the XXII International Conference on Domain Decomposition Methods. Springer Nature Switzerland (2016) 521–529. | DOI | MR

[24] J.G. Heywood, R. Rannacher and S. Turek, Artificial boundaries and flux and pressure conditions for the incompressible Navier–Stokes equations. Int. J. Num. Methods Fluids 22 (1996) 325–352. | DOI | MR | Zbl

[25] C. Japhet, Optimized Krylov–Ventcell method. Application to convection-diffusion problems, edited by P.E. Bjorstad, M.S. Espedal and D.E. Keyes. In: Proc. of the Ninth International Conference on Domain Decomposition Methods. Springer, Berlin (1998) 382–389.

[26] C. Japhet, N. Nataf and F. Rogier, The optimized order 2 method. Application to convection-diffusion problems. Fut. Gen. Comput. Syst. 18 (2001) 17–30. | DOI | Zbl

[27] N. Lebedev, Special Functions and Their Applications. Courier Dover Publications, Mineola, NY, USA (1972). | MR | Zbl

[28] H. Lee, Optimal control for quasi-newtonian flows with defective boundary conditions. Comput. Methods Appl. Mech. Eng. 200 (2011) 2498–2506. | DOI | MR | Zbl

[29] J.S. Leiva, P.J. Blanco and G.C. Buscaglia, Partitioned analysis for dimensionally-heterogeneous hydraulic networks. Mult. Model. Simul. 9 (2011) 872–903. | DOI | MR | Zbl

[30] P.L. Lions, On the Schwarz alternating method III, edited by T. Chan, R. Glowinki, J. Periaux and O.B. Widlund, In: Proc. of the Third International Symposium on Domain Decomposition Methods for PDE’s. Siam, Philadelphia (1990) 202–223. | MR | Zbl

[31] F. Magoulès, P. Ivanyi and B.H.V. Topping, Non-overlapping Schwarz method with optimized transmission conditions for the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 193 (2004) 4797–4818. | DOI | MR | Zbl

[32] A.C.I. Malossi, P.J. Blanco, P. Crosetto, S. Deparis and A. Quarteroni, Implicit coupling of one-dimensional and three-dimensional blood flow models with compliant vessels. Multiscale Model Simul. 11 (2013) 474–506. | DOI | MR | Zbl

[33] G. Papadakis, Coupling 3d and 1d fluid–structure-interaction models for wave propagation in flexible vessels using a finite volume pressure-correction scheme. Comm. Numer. Meth. Eng. 25 (2009) 533–551. | DOI | MR | Zbl

[34] A. Porpora, P. Zunino, C. Vergara and M. Piccinelli, Numerical treatment of boundary conditions to replace lateral branches in haemodynamics. Int. J. Numer. Meth. Biomed. Eng. 28 (2012) 1165–1183. | DOI | MR

[35] A. Qaddouri, L. Laayouni, S. Loisel, J Cote and M.J. Gander, Optimized Schwarz methods with an overset grid for the shallow-water equations: preliminary results. Appl. Num. Math. 58 (2008) 459–471. | DOI | MR | Zbl

[36] A. Quarteroni, A. Manzoni and C. Vergara, The cardiovascular system: mathematical modelling, numerical algorithms and clinical applications. Acta Numer. 26 (2017) 365–590. | DOI | MR | Zbl

[37] A. Quarteroni, A. Veneziani and C. Vergara, Geometric multiscale modeling of the cardiovascular system, between theory and practice. Comput. Methods Appl. Mech. Eng. 302 (2016) 193–252. | DOI | MR | Zbl

[38] B. Stupfel, Improved transmission conditions for a one-dimensional domain decomposition method applied to the solution of the Helmhotz equation. J. Comput. Phys. 229 (2010) 851–874. | DOI | MR | Zbl

[39] A. Veneziani and C. Vergara, Flow rate defective boundary conditions in haemodinamics simulations. Int. J. Num. Methods Fluids 47 (2005) 803–816. | DOI | MR | Zbl

[40] A. Veneziani and C. Vergara, An approximate method for solving incompressible Navier-Stokes problems with flow rate conditions. Comput. Methods Appl. Mech. Eng. 196 (2007) 1685–1700. | DOI | MR | Zbl

[41] C. Vergara, Nitsche’s method for defective boundary value problems in incompressibile fluid-dynamics. J. Sci. Comput. 46 (2011) 100–123. | DOI | MR | Zbl

[42] I.E. Vignon-Clementel, C.A. Figueroa, K. Jansen and C. Taylor, Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure waves in arteries. Comput. Methods Appl. Mech. Eng. 195 (2006) 3776–3996. | DOI | MR | Zbl

[43] Y. Yu, H. Baek and G.E. Karniadakis, Generalized fictitious methods for fluid-structure interactions: analysis and simulations. J. Comput. Phys. 245 (2013) 317–346. | DOI | MR | Zbl

[44] P. Zunino, Numerical approximation of incompressible flows with net flux defective boundary conditions by means of penalty technique. Comput. Methods Appl. Mech. Eng. 198 (2009) 3026–3038. | DOI | MR | Zbl

Cité par Sources :