On convergent schemes for two-phase flow of dilute polymeric solutions
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 6, pp. 2357-2408.

We construct a Galerkin finite element method for the numerical approximation of weak solutions to a recent micro-macro bead-spring model for two-phase flow of dilute polymeric solutions derived by methods from nonequilibrium thermodynamics ([Grün, Metzger, M3AS 26 (2016) 823–866]). The model consists of Cahn-Hilliard type equations describing the evolution of the fluids and the unsteady incompressible Navier-Stokes equations in a bounded domain in two or three spatial dimensions for the velocity and the pressure of the fluids with an elastic extra-stress tensor on the right-hand side in the momentum equation which originates from the presence of dissolved polymer chains. The polymers are modeled by dumbbells subjected to a finitely extensible, nonlinear elastic (FENE) spring-force potential. Their density and orientation are described by a Fokker-Planck type parabolic equation with a center-of-mass diffusion term. We perform a rigorous passage to the limit as the spatial and temporal discretization parameters simultaneously tend to zero, and show that a subsequence of these finite element approximations converges towards a weak solution of the coupled Cahn-Hilliard-Navier-Stokes-Fokker-Planck system. To underline the practicality of the presented scheme, we provide simulations of oscillating dilute polymeric droplets and compare their oscillatory behaviour to the one of Newtonian droplets.

DOI : 10.1051/m2an/2018042
Classification : 35Q30, 35Q35, 35Q84, 65M12, 65M60, 76A05, 82D60, 76T99
Mots clés : Convergence of finite-element schemes, existence of weak solutions, polymeric flow model, two-phase flow, diffuse interface models, Navier–Stokes equations, Fokker–Planck equations, Cahn–Hilliard equations, FENE
Metzger, Stefan 1

1
@article{M2AN_2018__52_6_2357_0,
     author = {Metzger, Stefan},
     title = {On convergent schemes for two-phase flow of dilute polymeric solutions},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2357--2408},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {6},
     year = {2018},
     doi = {10.1051/m2an/2018042},
     mrnumber = {3905186},
     zbl = {1421.35251},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2018042/}
}
TY  - JOUR
AU  - Metzger, Stefan
TI  - On convergent schemes for two-phase flow of dilute polymeric solutions
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 2357
EP  - 2408
VL  - 52
IS  - 6
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2018042/
DO  - 10.1051/m2an/2018042
LA  - en
ID  - M2AN_2018__52_6_2357_0
ER  - 
%0 Journal Article
%A Metzger, Stefan
%T On convergent schemes for two-phase flow of dilute polymeric solutions
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 2357-2408
%V 52
%N 6
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2018042/
%R 10.1051/m2an/2018042
%G en
%F M2AN_2018__52_6_2357_0
Metzger, Stefan. On convergent schemes for two-phase flow of dilute polymeric solutions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 6, pp. 2357-2408. doi : 10.1051/m2an/2018042. http://archive.numdam.org/articles/10.1051/m2an/2018042/

[1] H. Abels, H. Garcke and G. Grün, Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci. 22 (2012) 1150013. | DOI | MR | Zbl

[2] S. Aland, S. Boden, A. Hahn, F. Klingbeil, M. Weismann and S. Weller, Quantitative comparison of Taylor flow simulations based on sharp-interface and diffuse-interface models. Int. J. Numer. Methods Fluids 73 (2013) 344–361. | DOI

[3] F. Armero and J.C. Simo, Formulation of a new class of fractional-step methods for the incompressible MHD equations that retains the long-term dissipativity of the continuum dynamical system. Fields Inst. Commun. 10 (1996) 1–24. | MR | Zbl

[4] P. Azêrad and F. Guilln, Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluid dynamics. SIAM J. Math. Anal. 33 (2001) 847–859. | DOI | MR | Zbl

[5] J.W. Barrett and E. Süli, Existence of global weak solutions to some regularized kinetic models for dilute polymers. Multiscale Model. Simul. 6 (2007) 506–546. | DOI | MR | Zbl

[6] J.W. Barrett and E. Süli, Existence and equilibration of global weak solutions to kinetic models for dilute polymers. I: Finitely extensible nonlinear bead-spring chains. M3AS 21 (2011) 1211–1289. | MR | Zbl

[7] J.W. Barrett and E. Süli, Finite element approximation of kinetic dilute polymer models with microscopic cut-off, ESAIM: M2AN 45 (2011) 39–89. | DOI | Numdam | MR | Zbl

[8] J.W. Barrett and E. Süli, Finite element approximation of finitely extensible nonlinear elastic dumbbell models for dilute polymers. ESAIM: M2AN 46 (2012) 949–978. | DOI | Numdam | MR | Zbl

[9] S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Springer (2002). | DOI | MR | Zbl

[10] E. Campillo-Funollet, G. Grün and F. Klingbeil, On modeling and simulation of electrokinetic phenomena in two-phase flow with general mass densities. SIAM J. App. Math. 72 (2012) 1899–1925. | DOI | MR | Zbl

[11] Ph.G. Ciarlet, The finite element method for elliptic problems. North-Holland (1978). | MR

[12] M. Dauge, Stationary stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. Part I. Linearized equations. SIAM J. Math. Anal. 20 (1989) 74–97. | DOI | MR | Zbl

[13] E.M. Guillén-González and J.V. Gutierrez-Santacreu, A linear mixed finite element scheme for a nematic Ericksen-Leslie liquid crystal model. ESAIM: M2AN 47 (2013) 1433–1464. | DOI | Numdam | MR | Zbl

[14] V. Girault and P. Raviard, Finite element methods for Navier-Stokes equations. In Vol. 5 of Springer Series in Computational Mathematics. Springer (1986). | DOI | MR | Zbl

[15] E. Grün, On convergent schemes for diffuse interface models for two-phase flow of incompressible fluids with general mass densities. SIAM J. Numer. Anal. 51 (2013) 3036–3061. | DOI | MR | Zbl

[16] G. Grün, F. Guillén-González and S. Metzger, On fully decoupled, convergent schemes for diffuse interface models for two-phase flow with general mass densities. CiCP 19 (2016) 1473–1502. | DOI | MR | Zbl

[17] G. Grün and F. Klingbeil, Two-phase flow with mass density contrast: stable schemes for a thermodynamic consistent and frame-indifferent diffuse-interface model. J. Comput. Phys. 257 Part A (2014) 708–725. | DOI | MR | Zbl

[18] G. Grün and S. Metzger, On micro-macro-models for two-phase flow with dilute polymeric solutions – modeling and analysis. Math. Model. Methods Appl. Sci. 26 (2016) 823–866. | DOI | MR | Zbl

[19] G. Grün and M. Rumpf, Nonnegativity preserving convergent schemes for the thin film equation. Numer. Math 87 (2000) 113–152. | DOI | MR | Zbl

[20] F. Guillén-González and G. Tierra, Splitting schemes for a Navier-Stokes-Cahn-Hilliard model for two fluids with different densities. J. Comput. Math. 32 (2014) 643–664. | DOI | MR | Zbl

[21] J.G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19 (1982) 275–311. | DOI | MR | Zbl

[22] C. Le Bris and T. Leliévre, Multiscale modelling of complex fluids: a mathematical initiation, in Multiscale modeling and simulation in science, edited by B. Engquist, P. Lötstedt and O. Runborg. In Vol. 66 of Lecture Notes in Computational Science and Engineering. Springer (2009) 49–137. | DOI | MR | Zbl

[23] N. Masmoudi, Well-posedness for the fene dumbbell model of polymeric flows. Commun. Pure Appl. Math. 61 (2008) 1685–1714. | DOI | MR | Zbl

[24] N. Masmoudi, Global existence of weak solutions to the FENE dumbbell model of polymeric flows. Invent. Math. 191 (2013) 427–500. | DOI | MR | Zbl

[25] S. Metzger, Diffuse interface models for complex flow scenarios: modeling, analysis and simulations. Ph.D. thesis, Friedrich-Alexander-Universitát Erlangen-Nürnberg (2017).

[26] S. Minjeaud, An unconditionally stable uncoupled scheme for a triphasic Cahn-Hilliard/Navier-Stokes model. Numer Methods Partial Differ Equ. 29 (2013) 584–618. | DOI | MR | Zbl

[27] J. Simon, Compact sets in the space Lp(0, T; B). Ann. Mat. Pura Appl. (IV) 146 (1987) 65–96. | DOI | MR | Zbl

[28] R. Temam, Navier-Stokes equations: theory and numerical analysis. Reprint. with corr. AMS Chelsea Publ (2001). | MR | Zbl

[29] V. Thomée, Galerkin finite element methods for parabolic problems. Springer (1984). | MR

[30] H. Triebel. Interpolation theory, function spaces, differential operators. North-Holland Publ. (1978). | MR | Zbl

[31] H. Werner and H. Arndt, Gewöhnliche Differentialgleichungen. Springer Verlag (1991).

Cité par Sources :