In this article, a numerical analysis of the projector augmented-wave (PAW) method is presented, restricted to the case of dimension one with Dirac potentials modeling the nuclei in a periodic setting. The PAW method is widely used in electronic ab initio calculations, in conjunction with pseudopotentials. It consists in replacing the original electronic Hamiltonian H by a pseudo-Hamiltonian HPAW via the PAW transformation acting in balls around each nuclei. Formally, the new eigenvalue problem has the same eigenvalues as H and smoother eigenfunctions. In practice, the pseudo-Hamiltonian HPAW has to be truncated, introducing an error that is rarely analyzed. In this paper, error estimates on the lowest PAW eigenvalue are proved for the one-dimensional periodic Schrödinger operator with double Dirac potentials.
Accepté le :
Publié le :
DOI : 10.1051/m2an/2019017
Mots-clés : Eigenvalue problem, error analysis, electronic structure calculations, projector augmented-wave method
@article{M2AN_2020__54_1_25_0, author = {Dupuy, Mi-Song}, title = {Projector augmented-wave method: an analysis in a one-dimensional setting}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {25--58}, publisher = {EDP-Sciences}, volume = {54}, number = {1}, year = {2020}, doi = {10.1051/m2an/2019017}, mrnumber = {4051841}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2019017/} }
TY - JOUR AU - Dupuy, Mi-Song TI - Projector augmented-wave method: an analysis in a one-dimensional setting JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2020 SP - 25 EP - 58 VL - 54 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2019017/ DO - 10.1051/m2an/2019017 LA - en ID - M2AN_2020__54_1_25_0 ER -
%0 Journal Article %A Dupuy, Mi-Song %T Projector augmented-wave method: an analysis in a one-dimensional setting %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2020 %P 25-58 %V 54 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2019017/ %R 10.1051/m2an/2019017 %G en %F M2AN_2020__54_1_25_0
Dupuy, Mi-Song. Projector augmented-wave method: an analysis in a one-dimensional setting. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 1, pp. 25-58. doi : 10.1051/m2an/2019017. http://archive.numdam.org/articles/10.1051/m2an/2019017/
L’utilisation du formalisme PAW en théorie de la fonctionnelle de la densité perturbée. Research Report CEA (2006).
,Projector augmented-wave approach to density-functional perturbation theory. Phys. Rev. B 73 (2006) 235101. | DOI
, , and ,Variational projector augmented-wave method: theoretical analysis and preliminary numerical results. Preprint (2017). | arXiv | MR
, and ,Variational projector augmented-wave method. C.R. Math. 355 (2017) 665–670. | DOI | MR
, and ,Projector augmented-wave method. Phys. Rev. B 50 (1994) 17953–17979. | DOI
,Discretization error cancellation in electronic structure calculation: toward a quantitative study. ESAIM: M2AN 51 (2017) 1617–1636. | DOI | Numdam | MR
and ,A Projector Augmented Wave (PAW) code for electronic structure calculations, part I: atompaw for generating atom-centered functions. Comput. Phys. Commun. 135 (2001) 329–347. | DOI | Zbl
, and ,Generation of projector augmented-wave atomic data: A 71 element validated table in the XML format. Comput. Phys. Commun. 185 (2014) 1246–1254. | DOI
, and ,On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure Appl. Math. 10 (1957) 151–177. | DOI | MR | Zbl
,Efficacious form for model pseudopotentials. Phys. Rev. Lett. 48 (1982) 1425. | DOI
and ,From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59 (1999) 1758–1775. | DOI
and ,All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys. Rev. B 63 (2001) 245101. | DOI
and ,Implementation of the projector augmented-wave method in the ABINIT code: application to the study of iron under pressure. Comput. Mater. Sci. 42 (2008) 337–351. | DOI
, , , and ,Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43 (1991) 1993. | DOI
and ,Cité par Sources :