Projector augmented-wave method: an analysis in a one-dimensional setting
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 1, pp. 25-58.

In this article, a numerical analysis of the projector augmented-wave (PAW) method is presented, restricted to the case of dimension one with Dirac potentials modeling the nuclei in a periodic setting. The PAW method is widely used in electronic ab initio calculations, in conjunction with pseudopotentials. It consists in replacing the original electronic Hamiltonian H by a pseudo-Hamiltonian HPAW via the PAW transformation acting in balls around each nuclei. Formally, the new eigenvalue problem has the same eigenvalues as H and smoother eigenfunctions. In practice, the pseudo-Hamiltonian HPAW has to be truncated, introducing an error that is rarely analyzed. In this paper, error estimates on the lowest PAW eigenvalue are proved for the one-dimensional periodic Schrödinger operator with double Dirac potentials.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2019017
Classification : 65N15, 65G99, 35P15
Mots-clés : Eigenvalue problem, error analysis, electronic structure calculations, projector augmented-wave method
@article{M2AN_2020__54_1_25_0,
     author = {Dupuy, Mi-Song},
     title = {Projector augmented-wave method: an analysis in a one-dimensional setting},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {25--58},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {1},
     year = {2020},
     doi = {10.1051/m2an/2019017},
     mrnumber = {4051841},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2019017/}
}
TY  - JOUR
AU  - Dupuy, Mi-Song
TI  - Projector augmented-wave method: an analysis in a one-dimensional setting
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 25
EP  - 58
VL  - 54
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2019017/
DO  - 10.1051/m2an/2019017
LA  - en
ID  - M2AN_2020__54_1_25_0
ER  - 
%0 Journal Article
%A Dupuy, Mi-Song
%T Projector augmented-wave method: an analysis in a one-dimensional setting
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 25-58
%V 54
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2019017/
%R 10.1051/m2an/2019017
%G en
%F M2AN_2020__54_1_25_0
Dupuy, Mi-Song. Projector augmented-wave method: an analysis in a one-dimensional setting. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 1, pp. 25-58. doi : 10.1051/m2an/2019017. http://archive.numdam.org/articles/10.1051/m2an/2019017/

C. Audouze, L’utilisation du formalisme PAW en théorie de la fonctionnelle de la densité perturbée. Research Report CEA (2006).

C. Audouze, F. Jollet, M. Torrent and X. Gonze, Projector augmented-wave approach to density-functional perturbation theory. Phys. Rev. B 73 (2006) 235101. | DOI

X. Blanc, E. Cancès and M.-S. Dupuy, Variational projector augmented-wave method: theoretical analysis and preliminary numerical results. Preprint (2017). | arXiv | MR

X. Blanc, E. Cancès and M.-S. Dupuy, Variational projector augmented-wave method. C.R. Math. 355 (2017) 665–670. | DOI | MR

P.E. Blochl, Projector augmented-wave method. Phys. Rev. B 50 (1994) 17953–17979. | DOI

E. Cancès and G. Dusson, Discretization error cancellation in electronic structure calculation: toward a quantitative study. ESAIM: M2AN 51 (2017) 1617–1636. | DOI | Numdam | MR

N. Holzwarth, A. Tackett and G. Matthews, A Projector Augmented Wave (PAW) code for electronic structure calculations, part I: atompaw for generating atom-centered functions. Comput. Phys. Commun. 135 (2001) 329–347. | DOI | Zbl

F. Jollet, M. Torrent and N. Holzwarth, Generation of projector augmented-wave atomic data: A 71 element validated table in the XML format. Comput. Phys. Commun. 185 (2014) 1246–1254. | DOI

T. Kato, On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure Appl. Math. 10 (1957) 151–177. | DOI | MR | Zbl

L. Kleinman and D. Bylander, Efficacious form for model pseudopotentials. Phys. Rev. Lett. 48 (1982) 1425. | DOI

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59 (1999) 1758–1775. | DOI

C.J. Pickard and F. Mauri, All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys. Rev. B 63 (2001) 245101. | DOI

M. Torrent, F. Jollet, F. Bottin, G. Zérah and X. Gonze, Implementation of the projector augmented-wave method in the ABINIT code: application to the study of iron under pressure. Comput. Mater. Sci. 42 (2008) 337–351. | DOI

N. Troullier and J.L. Martins, Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43 (1991) 1993. | DOI

Cité par Sources :