Stable decompositions of h p -BEM spaces and an optimal Schwarz preconditioner for the hypersingular integral operator in 3D
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 1, pp. 145-180.

We consider fractional Sobolev spaces H$$(Γ), θ∈[0, 1] on a 2D surface Γ. We show that functions in H$$(Γ) can be decomposed into contributions with local support in a stable way. Stability of the decomposition is inherited by piecewise polynomial subspaces. Applications include the analysis of additive Schwarz preconditioners for discretizations of the hypersingular integral operator by the p-version of the boundary element method with condition number bounds that are uniform in the polynomial degree p.

DOI : 10.1051/m2an/2019041
Classification : 65F08, 65N38, 41A35
Mots-clés : Preconditioning high order BEM, stable localization, domain decomposition
@article{M2AN_2020__54_1_145_0,
     author = {Karkulik, Michael and Melenk, Jens Markus and Rieder, Alexander},
     title = {Stable decompositions of $hp${-BEM} spaces and an optimal {Schwarz} preconditioner for the hypersingular integral operator in {3D}},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {145--180},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {1},
     year = {2020},
     doi = {10.1051/m2an/2019041},
     mrnumber = {4055459},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2019041/}
}
TY  - JOUR
AU  - Karkulik, Michael
AU  - Melenk, Jens Markus
AU  - Rieder, Alexander
TI  - Stable decompositions of $hp$-BEM spaces and an optimal Schwarz preconditioner for the hypersingular integral operator in 3D
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 145
EP  - 180
VL  - 54
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2019041/
DO  - 10.1051/m2an/2019041
LA  - en
ID  - M2AN_2020__54_1_145_0
ER  - 
%0 Journal Article
%A Karkulik, Michael
%A Melenk, Jens Markus
%A Rieder, Alexander
%T Stable decompositions of $hp$-BEM spaces and an optimal Schwarz preconditioner for the hypersingular integral operator in 3D
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 145-180
%V 54
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2019041/
%R 10.1051/m2an/2019041
%G en
%F M2AN_2020__54_1_145_0
Karkulik, Michael; Melenk, Jens Markus; Rieder, Alexander. Stable decompositions of $hp$-BEM spaces and an optimal Schwarz preconditioner for the hypersingular integral operator in 3D. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 1, pp. 145-180. doi : 10.1051/m2an/2019041. http://archive.numdam.org/articles/10.1051/m2an/2019041/

R.A. Adams and J.J.F. Fournier, Sobolev spaces, 2nd edition. In: Vol. 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam (2003). | MR | Zbl

M. Ainsworth and W. Mclean, Multilevel diagonal scaling preconditioners for boundary element equations on locally refined meshes. Numer. Math. 93 (2003) 387–413. | DOI | MR | Zbl

F. Ben Belgacem, Polynomial extensions of compatible polynomial traces in three dimensions. Comput. Meths. Appl. Mech. Eng. 116 (1994) 235–241. | DOI | MR | Zbl

C. Bernardi and Y. Maday, Spectral methods, edited by P.G. Ciarlet and J.L. Lions. In Handbook of Numerical Analysis. North Holland, Amsterdam (1997). | MR

C. Bernardi, M. Dauge and Y. Maday, Trace liftings which preserve polynomials. C.R. Acad. Sci. Paris, Série I 315 (1992) 333–338. | MR | Zbl

C. Bernardi, M. Dauge and Y. Maday, Polynomials in the Sobolev world (version 2). Tech. Report 14 , IRMAR (2007).

C. Bernardi, M. Dauge and Y. Maday, The lifting of polynomial traces revisited. Math. Comput. 79 (2010) 47–69. | DOI | MR | Zbl

R.S. Falk and R. Winther, The bubble transform: a new tool for analysis of finite element methods. Found. Comput. Math. (2015) 1–32. | MR | Zbl

H. Federer, Geometric measure theory, In Vol. 153 of Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag New York Inc., New York, NY (1969) MR 0257325. | MR | Zbl

T. Führer, J.M. Melenk, D. Praetorius and A. Rieder, Optimal additive Schwarz methods for the h p -BEM: The hypersingular integral operator in 3D on locally refined meshes. Comput. Math. Appl. 70 (2015) 1583–1605. | DOI | MR

E.H. Georgoulis, Inverse-type estimates on hp-finite element spaces and applications. Math. Comput. 77 (2008) 201–219. | DOI | MR | Zbl

N. Heuer, Additive Schwarz methods for indefinite hypersingular integral equations in 𝐑 3 – the p -version. Appl. Anal. 72 (1999) 411–437. | DOI | MR | Zbl

N. Heuer, On the equivalence of fractional-order Sobolev semi-norms. J. Math. Anal. Appl. 417 (2014) 505–518. | DOI | MR | Zbl

G.C. Hsiao and W.L. Wendland, Boundary integral equations, In Vol. 164 of Applied Mathematical Sciences. Springer-Verlag, Berlin (2008). | MR | Zbl

M. Karkulik, J.M. Melenk and A. Rieder, On interpolation spaces of piecewise polynomials on mixed meshes (2016).

P.-L. Lions, On the Schwarz alternating method. I. In First International Symposium on Domain Decomposition Methods for Partial Differential Equations (Paris, 1987), SIAM, Philadelphia, PA (1988) 1–42. | MR | Zbl

Y. Maday, Relèvement de traces polyômiales et interpolations hilbertiennes entres espaces de polynômes. C.R. Acad. Sci. Paris Sér. I 309 (1989) 463–468. | MR | Zbl

A.M. Matsokin and S.V. Nepomnyaschikh, A Schwarz alternating method in a subspace. Sov. Math. 29 (1985) 78–84. | Zbl

W. Mclean, Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cambridge (2000). | MR | Zbl

J.M. Melenk and B. Wohlmuth, Quasi-optimal approximation of surface based Lagrange multipliers in finite element methods. SIAM J. Numer. Anal. 50 (2012) 2064–2087. | DOI | MR | Zbl

L. Pavarino, Additive Schwarz methods for the p -version finite element method. Numer. Math. 66 (1994) 493–515. | DOI | MR | Zbl

S.A. Sauter and C. Schwab, Boundary element methods. Translated and expanded from the 2004 German original. . In Vol. 39 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (2011). | DOI | MR | Zbl

J. Schöberl, J.M. Melenk, C. Pechstein and S. Zaglmayr, Additive Schwarz preconditioning for p -version triangular and tetrahedral finite elements. IMA J. Numer. Anal. 28 (2008) 1–24. | DOI | MR | Zbl

C. Schwab, p - and h p -finite element methods. Theory and applications in solid and fluid mechanics. In Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press , New York, NY (1998). | MR | Zbl

E.M. Stein, Singular integrals and differentiability properties of functions. Princeton University Press, Princeton (1970). | MR | Zbl

O. Steinbach, Numerical approximation methods for elliptic boundary value problems. In: Finite and boundary elements. Translated from the 2003 German Original. Springer, New York, NY (2008). | MR | Zbl

L. Tartar, An introduction to Sobolev spaces and interpolation spaces. In Vol. 3 of Lecture Notes of the Unione Matematica Italiana. Springer, Berlin (2007). | MR | Zbl

A. Toselli and O. Widlund, Domain decomposition methods – algorithms and theory. In Vol. 34 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (2005). | DOI | MR | Zbl

T. Tran and E.P. Stephan, Additive Schwarz methods for the h -version boundary element method. Appl. Anal. 60 (1996) 63–84. | DOI | MR | Zbl

T. Von Petersdorff, Randwertprobleme der Elastizitätstheorie für Polyeder – Singularitäten und Approximation mit Randelementmethoden. Ph.D. thesis, Technische Hochschule Darmstadt (1989). | Zbl

X. Zhang, Multilevel Schwarz methods. Numer. Math. 63 (1992) 521–539. | DOI | MR | Zbl

Cité par Sources :