We consider fractional Sobolev spaces H$$(Γ), θ∈[0, 1] on a 2D surface Γ. We show that functions in H$$(Γ) can be decomposed into contributions with local support in a stable way. Stability of the decomposition is inherited by piecewise polynomial subspaces. Applications include the analysis of additive Schwarz preconditioners for discretizations of the hypersingular integral operator by the p-version of the boundary element method with condition number bounds that are uniform in the polynomial degree p.
Mots-clés : Preconditioning high order BEM, stable localization, domain decomposition
@article{M2AN_2020__54_1_145_0, author = {Karkulik, Michael and Melenk, Jens Markus and Rieder, Alexander}, title = {Stable decompositions of $hp${-BEM} spaces and an optimal {Schwarz} preconditioner for the hypersingular integral operator in {3D}}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {145--180}, publisher = {EDP-Sciences}, volume = {54}, number = {1}, year = {2020}, doi = {10.1051/m2an/2019041}, mrnumber = {4055459}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2019041/} }
TY - JOUR AU - Karkulik, Michael AU - Melenk, Jens Markus AU - Rieder, Alexander TI - Stable decompositions of $hp$-BEM spaces and an optimal Schwarz preconditioner for the hypersingular integral operator in 3D JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2020 SP - 145 EP - 180 VL - 54 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2019041/ DO - 10.1051/m2an/2019041 LA - en ID - M2AN_2020__54_1_145_0 ER -
%0 Journal Article %A Karkulik, Michael %A Melenk, Jens Markus %A Rieder, Alexander %T Stable decompositions of $hp$-BEM spaces and an optimal Schwarz preconditioner for the hypersingular integral operator in 3D %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2020 %P 145-180 %V 54 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2019041/ %R 10.1051/m2an/2019041 %G en %F M2AN_2020__54_1_145_0
Karkulik, Michael; Melenk, Jens Markus; Rieder, Alexander. Stable decompositions of $hp$-BEM spaces and an optimal Schwarz preconditioner for the hypersingular integral operator in 3D. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 1, pp. 145-180. doi : 10.1051/m2an/2019041. http://archive.numdam.org/articles/10.1051/m2an/2019041/
Sobolev spaces, 2nd edition. In: Vol. 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam (2003). | MR | Zbl
and ,Multilevel diagonal scaling preconditioners for boundary element equations on locally refined meshes. Numer. Math. 93 (2003) 387–413. | DOI | MR | Zbl
and ,Polynomial extensions of compatible polynomial traces in three dimensions. Comput. Meths. Appl. Mech. Eng. 116 (1994) 235–241. | DOI | MR | Zbl
,Spectral methods, edited by and . In Handbook of Numerical Analysis. North Holland, Amsterdam (1997). | MR
and ,Trace liftings which preserve polynomials. C.R. Acad. Sci. Paris, Série I 315 (1992) 333–338. | MR | Zbl
, and ,Polynomials in the Sobolev world (version 2). Tech. Report 14 , IRMAR (2007).
, and ,The lifting of polynomial traces revisited. Math. Comput. 79 (2010) 47–69. | DOI | MR | Zbl
, and ,The bubble transform: a new tool for analysis of finite element methods. Found. Comput. Math. (2015) 1–32. | MR | Zbl
and ,Geometric measure theory, In Vol. 153 of Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag New York Inc., New York, NY (1969) MR 0257325. | MR | Zbl
,Optimal additive Schwarz methods for the -BEM: The hypersingular integral operator in 3D on locally refined meshes. Comput. Math. Appl. 70 (2015) 1583–1605. | DOI | MR
, , and ,Inverse-type estimates on hp-finite element spaces and applications. Math. Comput. 77 (2008) 201–219. | DOI | MR | Zbl
,Additive Schwarz methods for indefinite hypersingular integral equations in – the -version. Appl. Anal. 72 (1999) 411–437. | DOI | MR | Zbl
,On the equivalence of fractional-order Sobolev semi-norms. J. Math. Anal. Appl. 417 (2014) 505–518. | DOI | MR | Zbl
,Boundary integral equations, In Vol. 164 of Applied Mathematical Sciences. Springer-Verlag, Berlin (2008). | MR | Zbl
and ,On interpolation spaces of piecewise polynomials on mixed meshes (2016).
, and ,On the Schwarz alternating method. I. In First International Symposium on Domain Decomposition Methods for Partial Differential Equations (Paris, 1987), SIAM, Philadelphia, PA (1988) 1–42. | MR | Zbl
,Relèvement de traces polyômiales et interpolations hilbertiennes entres espaces de polynômes. C.R. Acad. Sci. Paris Sér. I 309 (1989) 463–468. | MR | Zbl
,A Schwarz alternating method in a subspace. Sov. Math. 29 (1985) 78–84. | Zbl
and ,Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cambridge (2000). | MR | Zbl
,Quasi-optimal approximation of surface based Lagrange multipliers in finite element methods. SIAM J. Numer. Anal. 50 (2012) 2064–2087. | DOI | MR | Zbl
and ,Additive Schwarz methods for the -version finite element method. Numer. Math. 66 (1994) 493–515. | DOI | MR | Zbl
,Boundary element methods. Translated and expanded from the 2004 German original. . In Vol. 39 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (2011). | DOI | MR | Zbl
and ,Additive Schwarz preconditioning for -version triangular and tetrahedral finite elements. IMA J. Numer. Anal. 28 (2008) 1–24. | DOI | MR | Zbl
, , and ,- and -finite element methods. Theory and applications in solid and fluid mechanics. In Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press , New York, NY (1998). | MR | Zbl
,Singular integrals and differentiability properties of functions. Princeton University Press, Princeton (1970). | MR | Zbl
,Numerical approximation methods for elliptic boundary value problems. In: Finite and boundary elements. Translated from the 2003 German Original. Springer, New York, NY (2008). | MR | Zbl
,An introduction to Sobolev spaces and interpolation spaces. In Vol. 3 of Lecture Notes of the Unione Matematica Italiana. Springer, Berlin (2007). | MR | Zbl
,Domain decomposition methods – algorithms and theory. In Vol. 34 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (2005). | DOI | MR | Zbl
and ,Additive Schwarz methods for the -version boundary element method. Appl. Anal. 60 (1996) 63–84. | DOI | MR | Zbl
and ,Randwertprobleme der Elastizitätstheorie für Polyeder – Singularitäten und Approximation mit Randelementmethoden. Ph.D. thesis, Technische Hochschule Darmstadt (1989). | Zbl
,Multilevel Schwarz methods. Numer. Math. 63 (1992) 521–539. | DOI | MR | Zbl
,Cité par Sources :