Non-linear analysis of a model for yeast cell communication
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 2, pp. 619-648.

We study the non-linear stability of a coupled system of two non-linear transport-diffusion equations set in two opposite half-lines. This system describes some aspects of yeast pairwise cellular communication, through the concentration of some protein in the cell bulk and at the cell boundary. We show that it is of bistable type, provided that the intensity of active molecular transport is large enough. We prove the non-linear stability of the most concentrated steady state, for large initial data, by entropy and comparison techniques. For small initial data we prove the self-similar decay of the molecular concentration towards zero. Informally speaking, the rise of a dialog between yeast cells requires enough active molecular transport in this model. Besides, if the cells do not invest enough in the communication with their partner, they do not respond to each other; but a sufficient initial input from each cell in the dialog leads to the establishment of a stable activated state in both cells.

DOI : 10.1051/m2an/2019065
Classification : 35B32, 35B35, 35B40, 35K40, 35Q92, 92B05, 92C17, 92C37
Mots-clés : Non-linear stability, asymptotic convergence, logarithmic Sobolev inequality, HWI inequality
@article{M2AN_2020__54_2_619_0,
     author = {Calvez, Vincent and Lepoutre, Thomas and Meunier, Nicolas and Muller, Nicolas},
     title = {Non-linear analysis of a model for yeast cell communication},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {619--648},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {2},
     year = {2020},
     doi = {10.1051/m2an/2019065},
     mrnumber = {4065622},
     zbl = {1434.35251},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2019065/}
}
TY  - JOUR
AU  - Calvez, Vincent
AU  - Lepoutre, Thomas
AU  - Meunier, Nicolas
AU  - Muller, Nicolas
TI  - Non-linear analysis of a model for yeast cell communication
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 619
EP  - 648
VL  - 54
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2019065/
DO  - 10.1051/m2an/2019065
LA  - en
ID  - M2AN_2020__54_2_619_0
ER  - 
%0 Journal Article
%A Calvez, Vincent
%A Lepoutre, Thomas
%A Meunier, Nicolas
%A Muller, Nicolas
%T Non-linear analysis of a model for yeast cell communication
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 619-648
%V 54
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2019065/
%R 10.1051/m2an/2019065
%G en
%F M2AN_2020__54_2_619_0
Calvez, Vincent; Lepoutre, Thomas; Meunier, Nicolas; Muller, Nicolas. Non-linear analysis of a model for yeast cell communication. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 2, pp. 619-648. doi : 10.1051/m2an/2019065. http://archive.numdam.org/articles/10.1051/m2an/2019065/

[1] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, Molecular Biology of the Cell, 5th edition. Garland Science (2007).

[2] A. Arnold, P. Markowich, G. Toscani and A. Unterreiter, On convex sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck type equations. Commun. Partial Differ. Equ. 26 (2001) 43–100. | DOI | MR | Zbl

[3] M. Bagnat and K. Simons, Cell surface polarization during yeast mating. Proc. Nat. Acad. Sci. 99 (2002) 14183–14188. | DOI

[4] P. Biler, G. Karch, P. Laurençot and T. Nadzieja, The 8 π -problem for radially symmetric solutions of a chemotaxis model in the plane. Math. Methods Appl. Sci. 29 (2006) 1563–1583. | DOI | MR | Zbl

[5] A. Blanchet, On the parabolic-elliptic Patlak–Keller–Segel system in dimension 2 and higher, Séminaire Laurent Schwartz – EDP et applications (2011–2012). | MR

[6] M.J. Cáceres and R. Schneider, Blow-up, steady states and long time behaviour of excitatory-inhibitory nonlinear neuron models. Kinet. Relat. Models 10 (2017) 587–612. | DOI | MR

[7] M.J. Cáceres, J.A. Carrillo and B. Perthame, Analysis of nonlinear noisy integrate & fire neuron models: blow-up and steady states. J. Math. Neurosci. 1 (2011) 7. | DOI | MR | Zbl

[8] V. Calvez, N. Meunier and R. Voituriez, A one-dimensional Keller-Segel equation with a drift issued from the boundary. C. R. Math. Acad. Sci. Paris 348 (2010) 629–634. | DOI | MR | Zbl

[9] V. Calvez, R. Hawkins, N. Meunier and R. Voituriez, Analysis of a nonlocal model for spontaneous cell polarization. SIAM J. Appl. Math. 72 (2012) 594–622. | DOI | MR | Zbl

[10] J.A. Carrillo, M.M. González, M.P. Gualdani and M.E. Schonbek, Classical solutions for a nonlinear Fokker-Planck equation arising in computational neuroscience. Commun. Partial Differ. Equ. 38 (2013) 385–409. | DOI | MR | Zbl

[11] J.A. Carrillo, B. Perthame, D. Salort and D. Smets, Qualitative properties of solutions for the noisy integrate and fire model in computational neuroscience. Nonlinearity 28 (2015) 3365. | DOI | MR

[12] W. Chen, Q. Nie, T.-M. Yi and C.-S. Chou, Modelling of yeast mating reveals robustness strategies for cell–cell interactions. PLoS Comput. Biol. 12 (2016) e1004988. | DOI

[13] C.-S. Chou, Q. Nie and T.-M. Yi, Modeling robustness tradeoffs in yeast cell polarization induced by spatial gradients. PLoS One 3 (2008) e3103. | DOI

[14] C.-S. Chou, L. Bardwell, Q. Nie and T.-M. Yi, Noise filtering tradeoffs in spatial gradient sensing and cell polarization response. BMC Syst. Biol. 5 (2011) 196. | DOI

[15] I. Csiszár, Information-type measures of difference of probability distributions and indirect observations. Studia Sci. Math. Hungar. 2 (1967) 299–318. | MR | Zbl

[16] G. Dumont, J. Henry and C.O. Tarniceriu, Noisy threshold in neuronal models: connections with the noisy leaky integrate-and-fire model. J. Math. Biol. 73 (2016) 1413–1436. | DOI | MR

[17] J.M. Dyer, N.S. Savage, M. Jin, T.R. Zyla, T.C. Elston and D.J. Lew, Tracking shallow chemical gradients by actin-driven wandering of the polarization site. Curr. Biol. 23 (2013) 32–41. | DOI

[18] L.C. Evans, Partial differential equations, 2nd edition. In: Vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2010). | MR | Zbl

[19] T. Freisinger, B. Klünder, J. Johnson, N. Müller, G. Pichler, G. Beck, M. Costanzo, C. Boone, R.A. Cerione, E. Frey and R. Wedlich-Soldner, Establishment of a robust single axis of cell polarity by coupling multiple positive feedback loops. Nat. Commun. 4 (2013) 1807. | DOI

[20] H. Gajewski, On a variant of monotonicity and its application to differential equations. Nonlinear Anal.: Theory Methods App. 22 (1994) 73–80. | DOI | MR | Zbl

[21] R. Hawkins, O. Bénichou, M. Piel and R. Voituriez, Rebuilding cytoskeleton roads: active transport induced polarisation of cells. Phys. Rev. E 80 (2009) 040903. | DOI

[22] C.L. Jackson and L.H. Hartwell, Courtship in s. cerevisiae: both cell types choose mating partners by responding to the strongest pheromone signal. cell 63 (1990) 1039–1051. | DOI

[23] M. Jin, B. Errede, M. Behar, W. Mather, S. Nayak, J. Hasty, H.G. Dohlman and T.C. Elston, Yeast dynamically modify their environment to achieve better mating efficiency. Sci. Signal. 4 (2011) ra54–ra54.

[24] I. Kim and Y. Yao, The Patlak–Keller–Segel model and its variations: properties of solutions via maximum principle. SIAM J. Math. Anal. 44 (2012) 568–602. | DOI | MR | Zbl

[25] S. Kullback, On the convergence of discrimination information. IEEE Trans. Inf. Theory IT-14 (1968) 765–766. | DOI | MR

[26] M.J. Lawson, B. Drawert, M. Khammash, L. Petzold and T.-M. Yi, Spatial stochastic dynamics enable robust cell polarization. PLoS Comput. Biol. 9 (2013) e1003139. | DOI

[27] A.T. Layton, N.S. Savage, A.S. Howell, S.Y. Carroll, D.G. Drubin and D.J. Lew, Modeling vesicle traffic reveals unexpected consequences for Cdc42p-mediated polarity establishment. Curr. Biol. 21 (2011) 184–194. | DOI

[28] T. Lepoutre, N. Meunier and N. Muller, Cell polarisation model: the 1D case. J. Math. Pures Appl. 101 (2014) 152–171. | DOI | MR | Zbl

[29] K. Madden and M. Snyder, Cell polarity and morphogenesis in budding yeast. Ann. Rev. Microbiol. 52 (1998) 687–744. PMID: 9891811. | DOI

[30] T.I. Moore, C.-S. Chou, Q. Nie, N.L. Jeon and T.-M. Yi, Robust spatial sensing of mating pheromone gradients by yeast cells. PLoS One 3 (2008) e3865. | DOI

[31] T.I. Moore, H. Tanaka, H.J. Kim, N.L. Jeon and T.-M. Yi, Yeast G-proteins mediate directional sensing and polarization behaviors in response to changes in pheromone gradient direction. Mol. Biol. Cell 24 (2013) 521–34. | DOI

[32] N. Muller, M. Piel, V. Calvez, R. Voituriez, J. Gonçalves-Sá, C.-L. Guo, X. Jiang, A. Murray and N. Meunier, A predictive model for yeast cell polarization in pheromone gradients. PLoS Comput. Biol. 12 (2016) e1004795. | DOI

[33] N.S. Savage, A.T. Layton and D.J. Lew, Mechanistic mathematical model of polarity in yeast. Mol. Biol. Cell 23 (2012) 1998–2013. | DOI

[34] M.-N. Simon, C. De Virgilio, B. Souza, J.R. Pringle, A. Abo and S.I. Reed, Role for the rho-family gtpase cdc42 in yeast mating-pheromone signal pathway. Nature 376 (1995) 702–705. | DOI

[35] B.D. Slaughter, S.E. Smith and R. Li, Symmetry breaking in the life cycle of the budding yeast. Cold Spring Harbor Perspect. Biol. 1 (2009) a003384. | DOI

[36] B.D. Slaughter, J.R. Unruh, A. Das, S.E. Smith, B. Rubinstein and R. Li, Non-uniform membrane diffusion enables steady-state cell polarization via vesicular trafficking. Nat. Commun. 4 (2013) 1380. | DOI

[37] C. Villani, Topics in optimal transportation. In: Vol. 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2003). | MR | Zbl

[38] R. Wedlich-Soldner, S. Altschuler, L. Wu and R. Li, Spontaneous cell polarization through actomyosin-based delivery of the cdc42 gtpase. Science 299 (2003) 1231–1235. | DOI

[39] R. Wedlich-Soldner, S.C. Wai, T. Schmidt and R. Li, Robust cell polarity is a dynamic state established by coupling transport and gtpase signaling. J. Cell Biol. 166 (2004) 889–900. | DOI

Cité par Sources :