The Hessian Riemannian flow and Newton’s method for effective Hamiltonians and Mather measures
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 6, pp. 1883-1915.

Effective Hamiltonians arise in several problems, including homogenization of Hamilton–Jacobi equations, nonlinear control systems, Hamiltonian dynamics, and Aubry–Mather theory. In Aubry–Mather theory, related objects, Mather measures, are also of great importance. Here, we combine ideas from mean-field games with the Hessian Riemannian flow to compute effective Hamiltonians and Mather measures simultaneously. We prove the convergence of the Hessian Riemannian flow in the continuous setting. For the discrete case, we give both the existence and the convergence of the Hessian Riemannian flow. In addition, we explore a variant of Newton’s method that greatly improves the performance of the Hessian Riemannian flow. In our numerical experiments, we see that our algorithms preserve the non-negativity of Mather measures and are more stable than related methods in problems that are close to singular. Furthermore, our method also provides a way to approximate stationary MFGs.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2020036
Classification : 65M22, 35F21, 35B27
Mots-clés : Mean-field game, effective Hamiltonians, Mather measure
@article{M2AN_2020__54_6_1883_0,
     author = {Gomes, Diogo A. and Yang, Xianjin},
     title = {The {Hessian} {Riemannian} flow and {Newton{\textquoteright}s} method for effective {Hamiltonians} and {Mather} measures},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1883--1915},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {6},
     year = {2020},
     doi = {10.1051/m2an/2020036},
     mrnumber = {4150229},
     zbl = {1472.65110},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2020036/}
}
TY  - JOUR
AU  - Gomes, Diogo A.
AU  - Yang, Xianjin
TI  - The Hessian Riemannian flow and Newton’s method for effective Hamiltonians and Mather measures
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 1883
EP  - 1915
VL  - 54
IS  - 6
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2020036/
DO  - 10.1051/m2an/2020036
LA  - en
ID  - M2AN_2020__54_6_1883_0
ER  - 
%0 Journal Article
%A Gomes, Diogo A.
%A Yang, Xianjin
%T The Hessian Riemannian flow and Newton’s method for effective Hamiltonians and Mather measures
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 1883-1915
%V 54
%N 6
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2020036/
%R 10.1051/m2an/2020036
%G en
%F M2AN_2020__54_6_1883_0
Gomes, Diogo A.; Yang, Xianjin. The Hessian Riemannian flow and Newton’s method for effective Hamiltonians and Mather measures. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 6, pp. 1883-1915. doi : 10.1051/m2an/2020036. http://archive.numdam.org/articles/10.1051/m2an/2020036/

[1] N. Almulla, R. Ferreira and D. Gomes, Two numerical approaches to stationary mean-field games. Dyn. Games App. 7 (2017) 657–682. | DOI | MR | Zbl

[2] F. Alvarez, J. Bolte and O. Brahic, Hessian Riemannian gradient flows in convex programming. SIAM J. Control Optim. 43 (2004) 477–501. | DOI | MR | Zbl

[3] G. Barles and P.E. Souganidis, On the large time behavior of solutions of Hamilton-Jacobi equations. SIAM J. Math. Anal. 31 (2000) 925–939. | DOI | MR | Zbl

[4] A. Biryuk and D. Gomes, An introduction to the Aubry-Mather theory. São Paulo J. Math. Sci. 4 (2010) 17–63. | DOI | MR | Zbl

[5] S. Cacace and F. Camilli, A generalized Newton method for homogenization of Hamilton-Jacobi equations. SIAM J. Sci. Comput. 38 (2016) 3589–3617. | DOI | MR | Zbl

[6] F. Cagnetti, D. Gomes and H.V. Tran, Aubry-Mather measures in the nonconvex setting. SIAM J. Math. Anal. 43 (2011) 2601–2629. | DOI | MR | Zbl

[7] I.C. Dolcetta and H. Ishii, On the rate of convergence in homogenization of Hamilton-Jacobi equations. Indiana Univ. Math. J. 50 (2001) 1113–1129. | MR | Zbl

[8] L.C. Evans, Some new PDE methods for weak KAM theory. Calc. Var. Part. Differ. Equ. 17 (2003) 159–177. | DOI | MR | Zbl

[9] L.C. Evans, Towards a quantum analog of weak KAM theory. Commun. Math. Phys. 244 (2004) 311–334. | DOI | MR | Zbl

[10] L.C. Evans and D. Gomes, Effective Hamiltonians and averaging for Hamiltonian dynamics. I. Arch. Ration. Mech. Anal. 157 (2001) 1–33. | DOI | MR | Zbl

[11] L.C. Evans and D. Gomes, Effective Hamiltonians and averaging for Hamiltonian dynamics II. Arch. Ration. Mech. Anal. 161 (2002) 271–305. | DOI | MR | Zbl

[12] L.C. Evans and D. Gomes, Linear programming interpretations of Mather’s variational principle. A tribute to J. L. Lions. ESAIM: COCV 8 (2002) 693–702. | Numdam | MR | Zbl

[13] M. Falcone and M. Rorro, On a variational approximation of the effective Hamiltonian. Numer. Math. Adv. App. 2 (2008) 719–726. | DOI | MR | Zbl

[14] D. Gomes, A stochastic analogue of Aubry-Mather theory. Nonlinearity 15 (2002) 581–603. | DOI | MR | Zbl

[15] D. Gomes, Regularity theory for Hamilton-Jacobi equations. J. Differ. Equ. 187 (2003) 359–374. | DOI | MR | Zbl

[16] D. Gomes and A.M. Oberman, Computing the effective Hamiltonian using a variational approach. SIAM J. Control Optim. 43 (2004) 792–812. | DOI | MR | Zbl

[17] D. Gomes, R. Iturriaga, H. Sánchez-Morgado and Y. Yu, Mather measures selected by an approximation scheme. Proc. Am. Math. Soc. 138 (2010) 3591–3601. | DOI | MR | Zbl

[18] D. Gomes, H. Mitake and H. Tran, The selection problem for discounted Hamilton-Jacobi equations: some non-convex cases. J. Math. Soc. Jan. 70 (2018) 345–364. | MR | Zbl

[19] H.R. Jauslin, H.O. Kreiss and J. Moser, On the forced Burgers equation with periodic boundary conditions. In: Vol. 65 of Proceedings of Symposia in Pure Mathematics American Mathematical Society (1999) 133–154. | MR | Zbl

[20] J.-M. Lasry, P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire, C. R. Math. Acad. Sci. Paris 343 (2006) 619–625. | DOI | MR | Zbl

[21] J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343 (2006) 679–684. | DOI | MR | Zbl

[22] P.L. Lions, G. Papanicolao and S.R.S. Varadhan, Homogeneization of Hamilton-Jacobi equations. Preliminary version (1988).

[23] S. Luo, Y. Yu and H. Zhao, A new approximation for effective Hamiltonians for homogenization of a class of Hamilton-Jacobi equations, Multiscale Model. Simul. 9 (2011) 711–734. | DOI | MR | Zbl

[24] A.J. Majda and P.E. Souganidis, Large scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales. Nonlinearity 7 (1994) 1. | DOI | MR | Zbl

[25] R. Mañé, On the minimizing measures of Lagrangian dynamical systems. Nonlinearity 5 (1992) 623–638. | DOI | MR | Zbl

[26] J. Mather, Action minimizing invariant measure for positive definite Lagrangian systems. Math. Z. 207 (1991) 169–207. | DOI | MR | Zbl

[27] A.M. Oberman, R. Takei and A. Vladimirsky, Homogenization of metric Hamilton-Jacobi equations. Multiscale Model. Simul. 8 (2009) 269–295. | DOI | MR | Zbl

[28] J. Qian, Two approximations for effective Hamiltonians arising from homogenization of Hamilton-Jacobi equations (2003).

[29] P.E. Souganidis, Existence of viscosity solutions of Hamilton-Jacobi equations. J. Differ. Equ. 56 (1985) 345–390. | DOI | MR | Zbl

[30] E. Weinan, A class of homogenization problems in the calculus of variations. Commun. Pure Appl. Math. 44 (1991) 733–759. | DOI | MR | Zbl

[31] E. Weinan, Aubry-Mather theory and periodic solutions of the forced Burgers equation. Commun. Pure Appl. Math. 52 (1999) 811–828. | DOI | MR | Zbl

Cité par Sources :