On the analysis of Bérenger's perfectly matched layers for Maxwell's equations
ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 1, pp. 87-119.

Dans ce travail, nous considérons le modèle de couches parfaitement adaptées, dit PML (Perfectly Matched Layers), introduit par Bérenger [3] pour la modélisation de frontières absorbantes en électromagnétisme. Nous menons une analyse mathématique de ce modèle, d'une part par une analyse modale par transformation de Fourier, d'autre part par des techniques énergétiques. Nous obtenons ainsi des résultats de stabilité uniforme en temps (qui précisent des résultats déjà connus dans la littérature) et établissons des résultats de décroissance d'énergie qui illustrent les propriétés d'absorption du modèle. Cette dernière technique permet aussi de démontrer la stabilité du schéma de Yee pour discrétiser les couches absorbantes.

In this work, we investigate the Perfectly Matched Layers (PML) introduced by Bérenger [3] for designing efficient numerical absorbing layers in electromagnetism. We make a mathematical analysis of this model, first via a modal analysis with standard Fourier techniques, then via energy techniques. We obtain uniform in time stability results (that make precise some results known in the literature) and state some energy decay results that illustrate the absorbing properties of the model. This last technique allows us to prove the stability of the Yee's scheme for discretizing PML's.

DOI : 10.1051/m2an:2002004
Classification : 65M06, 65M12, 35L05, 35L40, 78M20, 35B35
Mots-clés : absorbing layers, PML, Maxwell's equations, stability, hyperbolic systems, Fourier analysis, energy techniques, Yee's scheme
@article{M2AN_2002__36_1_87_0,
     author = {B\'ecache, Eliane and Joly, Patrick},
     title = {On the analysis of {B\'erenger's} perfectly matched layers for {Maxwell's} equations},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {87--119},
     publisher = {EDP-Sciences},
     volume = {36},
     number = {1},
     year = {2002},
     doi = {10.1051/m2an:2002004},
     zbl = {0992.78032},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an:2002004/}
}
TY  - JOUR
AU  - Bécache, Eliane
AU  - Joly, Patrick
TI  - On the analysis of Bérenger's perfectly matched layers for Maxwell's equations
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2002
SP  - 87
EP  - 119
VL  - 36
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an:2002004/
DO  - 10.1051/m2an:2002004
LA  - en
ID  - M2AN_2002__36_1_87_0
ER  - 
%0 Journal Article
%A Bécache, Eliane
%A Joly, Patrick
%T On the analysis of Bérenger's perfectly matched layers for Maxwell's equations
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2002
%P 87-119
%V 36
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an:2002004/
%R 10.1051/m2an:2002004
%G en
%F M2AN_2002__36_1_87_0
Bécache, Eliane; Joly, Patrick. On the analysis of Bérenger's perfectly matched layers for Maxwell's equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 1, pp. 87-119. doi : 10.1051/m2an:2002004. http://archive.numdam.org/articles/10.1051/m2an:2002004/

[1] S. Abarbanel and D. Gottlieb, A mathematical analysis of the PML method. J. Comput. Phys. 134 (1997) 357-363. | Zbl

[2] S. Abarbanel and D. Gottlieb, On the construction and analysis of absorbing layers in CEM. Appl. Numer. Math. 27 (1998) 331-340. | Zbl

[3] J.P. Bérenger, A Perfectly Matched Layer for the Absorption of Electromagnetic Waves. J. Comput. Phys. 114 (1994) 185-200. | Zbl

[4] F. Collino and P. Monk, Conditions et couches absorbantes pour les équations de Maxwell, in G. Cohen and P. Joly, Aspects récents en méthodes numériques pour les équations de Maxwell, Eds. École des Ondes, Chapter 4, INRIA, Rocquencourt (1998).

[5] J.W. Goodrich and T. Hagstrom, A comparison of two accurate boundary treatments for computational aeroacoustics. AIAA Paper-1585 (1997).

[6] J.S. Hesthaven, On the Analysis and Construction of Perfectly Matched Layers for the Linearized Euler Equations. J. Comput. Phys. 142 (1998) 129-147. | Zbl

[7] F.Q. Hu, On absorbing boundary conditions for linearized euler equations by a perfectly matched layer. J. Comput. Phys. 129 (1996) 201-219. | Zbl

[8] T. Kato, Perturbation Theory for Linear Operators. Springer (1995). | MR | Zbl

[9] H.-O. Kreiss and J. Lorenz, Initial-Boundary Value Problems and the Navier-Stokes Equations, in Pure Appl. Math. 136, Academic Press, Boston, USA (1989). | MR | Zbl

[10] J. Métral and O. Vacus, Caractère bien posé du problème de Cauchy pour le système de Bérenger. C.R. Acad. Sci. I Math. 10 (1999) 847-852. | Zbl

[11] P.G. Petropoulos, L. Zhao and A.C. Cangellaris, A reflectionless sponge layer absorbing boundary condition for the solution of Maxwell's equations with high-order staggered finite difference schemes. J. Comput. Phys. 139 (1998) 184-208. | Zbl

[12] A.N. Rahmouni, Des modèles PML bien posés pour divers problèmes hyperboliques. Ph.D. thesis, Université Paris Nord-Paris XIII (2000).

[13] Allen Taflove, Computational electrodynamics: the finite-difference time-domain method. Artech House (1995). | MR | Zbl

[14] E. Turkel and A. Yefet, Absorbing PML boundary layers for wave-like equations. Appl. Numer. Math. 27 (1998) 533-557. | Zbl

[15] L. Zhao and A.C. Cangellaris, A General Approach for the Development of Unsplit-Field Time-Domain Implementations of Perfectly Matched Layers for FDTD Grid Truncation. IEEE Microwave and Guided Letters 6 May 1996.

[16] R.W. Ziolkowski, Time-derivative lorentz material model-based absorbing boundary condition. IEEE Trans. Antennas Propagation 45 (1997) 1530-1535.

Cité par Sources :