In this paper we combine the dual-mixed finite element method with a Dirichlet-to-Neumann mapping (given in terms of a boundary integral operator) to solve linear exterior transmission problems in the plane. As a model we consider a second order elliptic equation in divergence form coupled with the Laplace equation in the exterior unbounded region. We show that the resulting mixed variational formulation and an associated discrete scheme using Raviart-Thomas spaces are well posed, and derive the usual Cea error estimate and the corresponding rate of convergence. In addition, we develop two different a-posteriori error analyses yielding explicit residual and implicit Bank-Weiser type reliable estimates, respectively. Several numerical results illustrate the suitability of these estimators for the adaptive computation of the discrete solutions.
Mots-clés : Dirichlet-to-Neumann mapping, mixed finite elements, Raviart-Thomas spaces, residual based estimates, Bank-Weiser approach
@article{M2AN_2002__36_2_241_0, author = {Barrientos, Mauricio A. and Gatica, Gabriel N. and Maischak, Matthias}, title = {\protect\emph{A-posteriori} error estimates for linear exterior problems \protect\emph{via} {mixed-FEM} and {DtN} mappings}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {241--272}, publisher = {EDP-Sciences}, volume = {36}, number = {2}, year = {2002}, doi = {10.1051/m2an:2002011}, mrnumber = {1906817}, zbl = {1028.65114}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2002011/} }
TY - JOUR AU - Barrientos, Mauricio A. AU - Gatica, Gabriel N. AU - Maischak, Matthias TI - A-posteriori error estimates for linear exterior problems via mixed-FEM and DtN mappings JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2002 SP - 241 EP - 272 VL - 36 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2002011/ DO - 10.1051/m2an:2002011 LA - en ID - M2AN_2002__36_2_241_0 ER -
%0 Journal Article %A Barrientos, Mauricio A. %A Gatica, Gabriel N. %A Maischak, Matthias %T A-posteriori error estimates for linear exterior problems via mixed-FEM and DtN mappings %J ESAIM: Modélisation mathématique et analyse numérique %D 2002 %P 241-272 %V 36 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2002011/ %R 10.1051/m2an:2002011 %G en %F M2AN_2002__36_2_241_0
Barrientos, Mauricio A.; Gatica, Gabriel N.; Maischak, Matthias. A-posteriori error estimates for linear exterior problems via mixed-FEM and DtN mappings. ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 2, pp. 241-272. doi : 10.1051/m2an:2002011. http://archive.numdam.org/articles/10.1051/m2an:2002011/
[1] A unified approach to a posteriori error estimation using element residual methods. Numer. Math. 65 (1993) 23-50. | EuDML | Zbl
and ,[2] Survey lectures on the mathematical foundations of the finite element method, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A.K. Aziz Ed., Academic Press, New York (1972). | MR | Zbl
and ,[3] Some a posteriori error estimators for elliptic partial differential equations. Math. Comp. 44 (1985) 283-301. | Zbl
and ,[4] A-posteriori Error Analysis of Dual-Mixed Variational Formulations for Linear and Nonlinear Boundary Value Problems (spanish). Ph.D. thesis, Universidad de Concepción, Concepción, Chile (in preparation).
,[5] An a-posteriori error estimate for a linear-nonlinear transmission problem in plane elastostatics. Technical Report 00-11, Departamento de Ingeniería Matemática, Universidad de Concepción (2000). Calcolo (to appear). | MR | Zbl
, and ,[6] A mixed finite element method for nonlinear elasticity: two-fold saddle point approach and a-posteriori error estimate. Technical Report 99-25, Departamento de Ingeniería Matemática, Universidad de Concepción (1999). Numer. Math. (to appear). | MR | Zbl
, and ,[7] Optimal finite-element interpolation on curved domains. SIAM J. Numer. Anal. 26 (1989) 1212-1240. | Zbl
,[8] Mixed and Hybrid Finite Element Methods. Springer-Verlag, Berlin, Heidelberg, New York (1991). | MR | Zbl
and ,[9] Symmetric coupling of boundary elements and Raviart-Thomas-type mixed finite elements in elastostatics. Numer. Math. 75 (1996) 153-174. | Zbl
, and ,[10] A posteriori error estimate for the symmetric coupling of finite elements and boundary elements. Computing 57 (1996) 301-322. | Zbl
,[11] An a-posteriori error estimate for a first-kind integral equation. Math. Comp. 66 (1997) 139-155. | Zbl
,[12] Coupling of mixed finite elements and boundary elements. IMA J. Numer. Anal. 20 (2000) 461-480. | Zbl
and ,[13] On the adaptive coupling of FEM and BEM in -d-elasticity. Numer. Math. 77 (1997) 187-221. | Zbl
, and ,[14] Adaptive coupling of boundary elements and finite elements. RAIRO Modél. Math. Anal. Numér. 29 (1995) 779-817. | Numdam | Zbl
and ,[15] Approximation by finite element functions using local regularisation. RAIRO Anal. Numér. 9 (1975) 77-84. | Numdam | Zbl
,[16] Combination of mixed finite element and Dirichlet-to-Neumann methods in nonlinear plane elasticity. Appl. Math. Lett. 10 (1997) 29-35. | Zbl
,[17] An application of Babuška-Brezzi's theory to a class of variational problems. Appl. Anal. 75 (2000) 297-303. | Zbl
,[18] A dual-dual formulation for the coupling of mixed-FEM and BEM in hyperelasticity. SIAM J. Numer. Anal. 38 (2000) 380-400. | Zbl
and ,[19] An implicit-explicit residual error estimator for the coupling of dual-mixed finite elements and boundary elements in elastostatics. Math. Methods Appl. Sci. 24 (2001) 179-191. | Zbl
, and ,[20] The uncoupling of boundary integral and finite element methods for nonlinear boundary value problems. J. Math. Anal. Appl. 189 (1995) 442-461. | Zbl
and ,[21] An a-posteriori error estimate for the coupling of BEM and mixed-FEM. Numer. Funct. Anal. Optim. 20 (1999) 449-472. | Zbl
and ,[22] A dual-dual mixed formulation for nonlinear exterior transmission problems. Math. Comp. 70 (2001) 1461-1480. | Zbl
and ,[23] A mixed-FEM formulation for nonlinear incompressible elasticity in the plane. Numer. Methods for Partial Differential Equations 18 (2002) 105-128. | Zbl
and ,[24] Coupling of mixed finite elements and boundary elements for linear and nonlinear elliptic problems. Appl. Anal. 63 (1996) 39-75. | Zbl
and ,[25] Coupling of mixed finite elements and boundary elements for a hyperelastic interface problem. SIAM J. Numer. Anal. 34 (1997) 2335-2356. | Zbl
and ,[26] Numerical Methods for Problems in Infinite Domains. Elsevier Science Publishers B.V. (1992), Studies in Applied Mechanics 33. | MR | Zbl
,[27] Elliptic Problems in Non-Smooth Domains. Monographs and Studies in Mathematics, Vol. 24, Pitman (1985). | Zbl
,[28] The artificial boundary conditions for incompressible materials on an unbounded domain. Numer. Math. 77 (1997) 347-363. | Zbl
and ,[29] The approximation of the exact boundary conditions at an artificial boundary for linear elastic equations and its application. Math. Comp. 59 (1992) 21-37. | Zbl
and ,[30] Optimal order multigrid methods for solving exterior boundary value problems. SIAM J. Numer. Anal. 31 (1994) 680-694. | Zbl
and ,[31] Linear Integral Equations. Springer-Verlag (1989). | MR | Zbl
,[32] On the coupling of boundary integral and mixed finite element methods. J. Comput. Appl. Math. 69 (1996) 113-124. | Zbl
, , and ,[33] An adaptive two-level method for the coupling of nonlinear FEM-BEM equations. SIAM J. Numer. Anal. 36 (1999) 1001-1021. | Zbl
and ,[34] Mixed and Hybrid Methods, in Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions Eds., Vol. II, Finite Element Methods (Part 1), North-Holland, Amsterdam (1991). | MR | Zbl
and ,[35] A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Chichester (1996). | Zbl
,[36] Nonlinear Elliptic and Evolution Problems and their Finite Element Approximations. Academic Press, London (1990). | MR | Zbl
,Cité par Sources :