We show that the Maxwell equations in the low frequency limit, in a domain composed of insulating and conducting regions, has a saddle point structure, where the electric field in the insulating region is the Lagrange multiplier that enforces the curl-free constraint on the magnetic field. We propose a mixed finite element technique for solving this problem, and we show that, under mild regularity assumption on the data, Lagrange finite elements can be used as an alternative to edge elements.
Mots-clés : finite element method, magnetohydrodynamics
@article{M2AN_2002__36_3_517_0, author = {Guermond, Jean Luc and Minev, Peter D.}, title = {Mixed finite element approximation of an {MHD} problem involving conducting and insulating regions : the {2D} case}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {517--536}, publisher = {EDP-Sciences}, volume = {36}, number = {3}, year = {2002}, doi = {10.1051/m2an:2002024}, mrnumber = {1918943}, zbl = {1137.65437}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2002024/} }
TY - JOUR AU - Guermond, Jean Luc AU - Minev, Peter D. TI - Mixed finite element approximation of an MHD problem involving conducting and insulating regions : the 2D case JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2002 SP - 517 EP - 536 VL - 36 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2002024/ DO - 10.1051/m2an:2002024 LA - en ID - M2AN_2002__36_3_517_0 ER -
%0 Journal Article %A Guermond, Jean Luc %A Minev, Peter D. %T Mixed finite element approximation of an MHD problem involving conducting and insulating regions : the 2D case %J ESAIM: Modélisation mathématique et analyse numérique %D 2002 %P 517-536 %V 36 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2002024/ %R 10.1051/m2an:2002024 %G en %F M2AN_2002__36_3_517_0
Guermond, Jean Luc; Minev, Peter D. Mixed finite element approximation of an MHD problem involving conducting and insulating regions : the 2D case. ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 3, pp. 517-536. doi : 10.1051/m2an:2002024. http://archive.numdam.org/articles/10.1051/m2an:2002024/
[1] A preconditioned semi-implicit method for magnetohydrodynamics equation. SIAM J. Sci. Comput. 21 (1999) 970-986. | Zbl
, and ,[2] Mixed and Hybrid Finite Element Methods. Springer Verlag, New York, Springer Ser. Comput. Math. 15 (1991). | MR | Zbl
and ,[3] Electromagnétisme en vue de la modélisation. SMAI/Springer-Verlag, Paris, Math. Appl. 14 (1993). See also Computational Electromagnetism, Variational Formulations, Complementary, Edge Elements, Academic Press (1998). | MR
,[4] Analyse fonctionnelle. Masson, Paris (1991). | MR | Zbl
,[5] Approximation by finite element functions using local regularization. Anal. Numér. 9 (1975) 77-84. | Numdam | Zbl
,[6] A coercive bilinear form for Maxwell's equations. J. Math. Anal. Appl. 157 (1991) 527-541. | Zbl
,[7]
and , time-dependent kinematic dynamos with stationary flows. Proc. Roy. Soc. London A425 (1989) 407-429.[8] Modeling of electromagnetic absorption/scattering problems using -adaptive finite elements. Comput. Methods Appl. Mech. Engrg. 152 (1998) 103-124. Symposium on Advances in Computational Mechanics, Vol. 5 (Austin, TX, 1997). | Zbl
and ,[9] A stabilized finite element method for the incompressible magnetohydrodynamic equations. Numer. Math. 87 (2000) 83-111. | Zbl
,[10] Numerical simulations of 2D MHD problems using Lagrange finite elements (in preparation 2001).
, and ,[11] Mixed finite element approximation of an MHD problem involving conducting and insulating regions: the 3D case (submitted 2002). | MR | Zbl
and ,[12] Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin, Springer Ser. Comput. Math. 5 (1986). | Zbl
and ,[13] Numerical simulations of cylindrical dynamos: scope and method. In 7th beer-Sheva Onternatal seminar, Vol. 162, pp. 282-292. AIAA Progress in Astronautics and aeronautic series, 1994.
,[14] Linear dynamo simulations with time dependent helical flows. Magnetohydrodynamics 31 (1995) 367-373. | Zbl
,[15] Problèmes aux limites non homogènes et applications, Vol. 1. Dunod, Paris (1968). | MR | Zbl
and ,[16] Magnetic Field Generation in Electrically Conducting Fluids. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, Cambridge (1978).
,[17] Analysis and numerical approximation of a stationary MHD flow problem with non-ideal boundary. SIAM J. Numer. Anal. 36 (1999) 1304-1332. | Zbl
and ,[18] Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967). | MR
,[19] A new family of mixed finite elements in . Numer. Math. 50 (1986) 57-81. | Zbl
,[20] Reconnexion of lines of force in rotating spheres and cylinders. Proc. Roy. Soc. 291 (1966) 60-72.
,[21] A finite element method for magnetohydrodynamics. Comput. Methods Appl. Mech. Engrg. 190 (2001) 5867-5892. | Zbl
, and ,[22] A conservative stabilized finite element method for magnetohydrodynamics equations. Internat. J. Numer. Methods Fluids 29 (1999) 535-554. | Zbl
, , and ,[23] Error estimates for a mixed finite element approximation of the Stokes equation. RAIRO Anal. Numér. 18 (1984) 175-182. | Numdam | Zbl
,Cité par Sources :