B-spline bases and osculating flats : one result of H.-P. Seidel revisited
ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 6, pp. 1177-1186.

Along with the classical requirements on B-splines bases (minimal support, positivity, normalization) we show that it is natural to introduce an additional “end point property”. When dealing with multiple knots, this additional property is exactly the appropriate requirement to obtain the poles of nondegenerate splines as intersections of osculating flats at consecutive knots.

DOI : 10.1051/m2an:2003010
Classification : 65D17
Mots-clés : geometric design, B-spline basis, blossoming, osculating flats
@article{M2AN_2002__36_6_1177_0,
     author = {Mazure, Marie-Laurence},
     title = {B-spline bases and osculating flats : one result of {H.-P.} {Seidel} revisited},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {1177--1186},
     publisher = {EDP-Sciences},
     volume = {36},
     number = {6},
     year = {2002},
     doi = {10.1051/m2an:2003010},
     mrnumber = {1958664},
     zbl = {1027.65020},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an:2003010/}
}
TY  - JOUR
AU  - Mazure, Marie-Laurence
TI  - B-spline bases and osculating flats : one result of H.-P. Seidel revisited
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2002
SP  - 1177
EP  - 1186
VL  - 36
IS  - 6
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an:2003010/
DO  - 10.1051/m2an:2003010
LA  - en
ID  - M2AN_2002__36_6_1177_0
ER  - 
%0 Journal Article
%A Mazure, Marie-Laurence
%T B-spline bases and osculating flats : one result of H.-P. Seidel revisited
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2002
%P 1177-1186
%V 36
%N 6
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an:2003010/
%R 10.1051/m2an:2003010
%G en
%F M2AN_2002__36_6_1177_0
Mazure, Marie-Laurence. B-spline bases and osculating flats : one result of H.-P. Seidel revisited. ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 6, pp. 1177-1186. doi : 10.1051/m2an:2003010. http://archive.numdam.org/articles/10.1051/m2an:2003010/

[1] N. Dyn and C.A. Micchelli, Piecewise polynomial spaces and geometric continuity of curves. Numer. Math. 54 (1988) 319-337. | Zbl

[2] T.N.T. Goodman, Properties of β-splines. J. Approx. Theory 44 (1985) 132-153. | Zbl

[3] M.-L. Mazure, Blossoming: a geometrical approach. Constr. Approx. 15 (1999) 33-68. | Zbl

[4] M.-L. Mazure, Quasi-Chebyshev splines with connexion matrices. Application to variable degree polynomial splines. Comput. Aided Geom. Design 18 (2001) 287-298. | Zbl

[5] H. Pottmann, The geometry of Tchebycheffian splines. Comput. Aided Geom. Design 10 (1993) 181-210. | Zbl

[6] L. Ramshaw, Blossoms are polar forms. Comput. Aided Geom. Design 6 (1989) 323-358. | Zbl

[7] H.-P. Seidel, New algorithms and techniques for computing with geometrically continuous spline curves of arbitrary degree. RAIRO Modél. Math. Anal. Numér. 26 (1992) 149-176. | Numdam | Zbl

[8] H.-P. Seidel, Polar forms for geometrically continuous spline curves of arbitrary degree. ACM Trans. Graphics 12 (1993) 1-34. | Zbl

Cité par Sources :