We propose a discontinuous Galerkin method for linear elasticity, based on discontinuous piecewise linear approximation of the displacements. We show optimal order a priori error estimates, uniform in the incompressible limit, and thus locking is avoided. The discontinuous Galerkin method is closely related to the non-conforming Crouzeix-Raviart (CR) element, which in fact is obtained when one of the stabilizing parameters tends to infinity. In the case of the elasticity operator, for which the CR element is not stable in that it does not fulfill a discrete Korn's inequality, the discontinuous framework naturally suggests the appearance of (weakly consistent) stabilization terms. Thus, a stabilized version of the CR element, which does not lock, can be used for both compressible and (nearly) incompressible elasticity. Numerical results supporting these assertions are included. The analysis directly extends to higher order elements and three spatial dimensions.
Mots-clés : Crouzeix-Raviart element, Nitsche's method, discontinuous Galerkin, incompressible elasticity
@article{M2AN_2003__37_1_63_0, author = {Hansbo, Peter and Larson, Mats G.}, title = {Discontinuous {Galerkin} and the {Crouzeix-Raviart} element : application to elasticity}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {63--72}, publisher = {EDP-Sciences}, volume = {37}, number = {1}, year = {2003}, doi = {10.1051/m2an:2003020}, zbl = {1137.65431}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2003020/} }
TY - JOUR AU - Hansbo, Peter AU - Larson, Mats G. TI - Discontinuous Galerkin and the Crouzeix-Raviart element : application to elasticity JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2003 SP - 63 EP - 72 VL - 37 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2003020/ DO - 10.1051/m2an:2003020 LA - en ID - M2AN_2003__37_1_63_0 ER -
%0 Journal Article %A Hansbo, Peter %A Larson, Mats G. %T Discontinuous Galerkin and the Crouzeix-Raviart element : application to elasticity %J ESAIM: Modélisation mathématique et analyse numérique %D 2003 %P 63-72 %V 37 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2003020/ %R 10.1051/m2an:2003020 %G en %F M2AN_2003__37_1_63_0
Hansbo, Peter; Larson, Mats G. Discontinuous Galerkin and the Crouzeix-Raviart element : application to elasticity. ESAIM: Modélisation mathématique et analyse numérique, Tome 37 (2003) no. 1, pp. 63-72. doi : 10.1051/m2an:2003020. http://archive.numdam.org/articles/10.1051/m2an:2003020/
[1] An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742-760. | Zbl
,[2] Finite element methods for elliptic equations using nonconforming elements. Math. Comp. 31 (1977) 45-59. | Zbl
,[3] Linear finite element methods for planar linear elasticity. Math. Comp. 59 (1992) 321-338. | Zbl
and ,[4] Galerkin Finite Element Methods for Parabolic Problems. Springer (1997). | MR | Zbl
,[5] Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Sér. Rouge 7 (1973) 33-75. | Numdam | Zbl
and ,[6] Nonconforming finite element methods for the equations of linear elasticity. Math. Comp. 57 (1991) 529-550. | Zbl
,[7] A nonconforming piecewise quadratic finite element on triangles. Internat. J. Numer. Methods Engrg. 19 (1983) 505-520. | Zbl
and ,[8] Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche's method. Comput. Methods Appl. Mech. Engrg. 191 (2002) 1895-1908. | Zbl
and ,[9] A simple nonconforming bilinear element for the elasticity problem. Trends in Computational Structural Mechanics, W.A. Wall et al. Eds., CIMNE (2001) 317-327.
and ,[10] The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, New Jersey (1987). | MR | Zbl
,[11] Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36 (1971) 9-15. | Zbl
,[12] A simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differential Equations 8 (1992) 97-111. | Zbl
and ,[13] Implementation of Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, New York (1981). | MR | Zbl
,[14] An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15 (1978) 152-161. | Zbl
,[15] Discontinuous Galerkin Methods: Theory, Computation, and Applications. Lecture Notes Comput. Sci. Eng., Springer Verlag (1999). | MR | Zbl
, and Eds.,Cité par Sources :